These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7602391)

  • 21. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining the most important cellular characteristics for fracture healing using design of experiments methods.
    Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K
    J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress intensity variations in bone microcracks during the repair process.
    Taylor D; Tilmans A
    J Theor Biol; 2004 Jul; 229(2):169-77. PubMed ID: 15207472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone.
    Uthgenannt BA; Kramer MH; Hwu JA; Wopenka B; Silva MJ
    J Bone Miner Res; 2007 Oct; 22(10):1548-56. PubMed ID: 17576168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does bone perfusion/reperfusion initiate bone remodeling and the stress fracture syndrome?
    Otter MW; Qin YX; Rubin CT; McLeod KJ
    Med Hypotheses; 1999 Nov; 53(5):363-8. PubMed ID: 10616033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteoprotegerin treatment impairs remodeling and apparent material properties of callus tissue without influencing structural fracture strength.
    Ulrich-Vinther M; Andreassen TT
    Calcif Tissue Int; 2005 Apr; 76(4):280-6. PubMed ID: 15812581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sex differences in long bone fatigue using a rat model.
    Moreno LD; Waldman SD; Grynpas MD
    J Orthop Res; 2006 Oct; 24(10):1926-32. PubMed ID: 16917903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of interfragmentary strain on the rate of bone healing-a new interpretation and mathematical model.
    Comiskey DP; Macdonald BJ; McCartney WT; Synnott K; O'Byrne J
    J Biomech; 2010 Oct; 43(14):2830-4. PubMed ID: 20655536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of mechanical loading in the progressive ossification of a fracture callus.
    Blenman PR; Carter DR; Beaupré GS
    J Orthop Res; 1989; 7(3):398-407. PubMed ID: 2703931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Mechanical mechanism in plastic stage of fracture union--application of bone surface remodeling theory].
    Zhu X; Bai X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):410-4. PubMed ID: 11211827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Bone fracture and the healing mechanisms. Histological aspect of fracture healing. Primary and secondary healing].
    Yamagiwa H; Endo N
    Clin Calcium; 2009 May; 19(5):627-33. PubMed ID: 19398828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue microdamage as an essential element of bone mechanics and biology.
    Martin RB
    Calcif Tissue Int; 2003 Aug; 73(2):101-7. PubMed ID: 14565590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Damage mechanisms and failure modes of cortical bone under components of physiological loading.
    George WT; Vashishth D
    J Orthop Res; 2005 Sep; 23(5):1047-53. PubMed ID: 16140189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene expression during bone repair.
    Sandberg MM; Aro HT; Vuorio EI
    Clin Orthop Relat Res; 1993 Apr; (289):292-312. PubMed ID: 8472429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model for intramembranous ossification during fracture healing.
    Thompson Z; Miclau T; Hu D; Helms JA
    J Orthop Res; 2002 Sep; 20(5):1091-8. PubMed ID: 12382977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.