These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7602391)

  • 41. On the role of bone damage in calcium homeostasis.
    Martínez-Reina J; García-Aznar JM; Domínguez J; Doblaré M
    J Theor Biol; 2008 Oct; 254(3):704-12. PubMed ID: 18625247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A mathematical model for simulating the bone remodeling process under mechanical stimulus.
    Li J; Li H; Shi L; Fok AS; Ucer C; Devlin H; Horner K; Silikas N
    Dent Mater; 2007 Sep; 23(9):1073-8. PubMed ID: 17137621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of short-term treatment with alendronate on ulnar bone adaptation to cyclic fatigue loading in rats.
    Barrett JG; Sample SJ; McCarthy J; Kalscheur VL; Muir P; Prokuski L
    J Orthop Res; 2007 Aug; 25(8):1070-7. PubMed ID: 17444501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Streaming potentials in healing, remodeling, and intact cortical bone.
    MacGinitie LA; Wu DD; Cochran GV
    J Bone Miner Res; 1993 Nov; 8(11):1323-35. PubMed ID: 8266824
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of running speed on a probabilistic stress fracture model.
    Edwards WB; Taylor D; Rudolphi TJ; Gillette JC; Derrick TR
    Clin Biomech (Bristol, Avon); 2010 May; 25(4):372-7. PubMed ID: 20096977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of adaptive bone formation in the etiology of stress fracture.
    Hughes JM; Popp KL; Yanovich R; Bouxsein ML; Matheny RW
    Exp Biol Med (Maywood); 2017 May; 242(9):897-906. PubMed ID: 27496801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture.
    Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV
    J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noninvasive fatigue fracture model of the rat ulna.
    Tami AE; Nasser P; Schaffler MB; Knothe Tate ML
    J Orthop Res; 2003 Nov; 21(6):1018-24. PubMed ID: 14554214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A model for fatigue crack propagation and remodelling in compact bone.
    Taylor D; Prendergast PJ
    Proc Inst Mech Eng H; 1997; 211(5):369-75. PubMed ID: 9427832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone.
    Taylor D; Lee TC
    J Anat; 2003 Aug; 203(2):203-11. PubMed ID: 12924820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Remodeling and the repair of fatigue damage.
    Burr DB
    Calcif Tissue Int; 1993; 53 Suppl 1():S75-80; discussion S80-1. PubMed ID: 8275384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone fatigue and its implications for injuries in racehorses.
    Martig S; Chen W; Lee PV; Whitton RC
    Equine Vet J; 2014 Jul; 46(4):408-15. PubMed ID: 24528139
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A phenomenological model for predicting fatigue life in bovine trabecular bone.
    Ganguly P; Moore TL; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Numerical model of bone remodeling sensitive to loading frequency through a poroelastic behavior and internal fluid movements.
    Malachanne E; Dureisseix D; Jourdan F
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):849-57. PubMed ID: 21616466
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of an in vivo bone fatigue damage model using axial compression of the rabbit forelimb.
    Buettmann EG; Silva MJ
    J Biomech; 2016 Oct; 49(14):3564-3569. PubMed ID: 27596952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bone fracture and bone fracture repair.
    Fazzalari NL
    Osteoporos Int; 2011 Jun; 22(6):2003-6. PubMed ID: 21523400
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fatigue damage, remodeling, and the minimization of skeletal weight.
    Martin RB
    J Theor Biol; 2003 Jan; 220(2):271-6. PubMed ID: 12602399
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving the damage accumulation in a biomechanical bone remodelling model.
    Restrepo JM; Choksi R; Hyman JM; Jiang Y
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):341-52. PubMed ID: 19089785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Damaged-bone adaptation under steady homogeneous stress.
    Ramtani S; Zidi M
    J Biomech Eng; 2002 Jun; 124(3):322-7. PubMed ID: 12071268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.