These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 7602539)

  • 1. Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat.
    Takahashi T; Owyang C
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):481-92. PubMed ID: 7602539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat.
    Zhou SY; Lu YX; Yao H; Owyang C
    Am J Physiol Gastrointest Liver Physiol; 2008 May; 294(5):G1201-9. PubMed ID: 18460697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the L-arginine-nitric oxide pathway on vasoactive intestinal polypeptide release and motility in the rat stomach in vitro.
    Willis S; Allescher HD; Weigert N; Schusdziarra V; Schumpelick V
    Eur J Pharmacol; 1996 Nov; 315(1):59-64. PubMed ID: 8960865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastric vasodilatation and vasoactive intestinal peptide output in response to vagal stimulation in the dog.
    Ito S; Ohga A; Ohta T
    J Physiol; 1988 Oct; 404():669-82. PubMed ID: 2908127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of vagal pathways mediating gastric accommodation reflex in rats.
    Takahashi T; Owyang C
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):479-88. PubMed ID: 9365919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vagal ganglionic and nonadrenergic noncholinergic neurotransmission to the ferret lower oesophageal sphincter.
    Smid SD; Blackshaw LA
    Auton Neurosci; 2000 Dec; 86(1-2):30-6. PubMed ID: 11269922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide, and not vasoactive intestinal peptide, as the main neurotransmitter of vagally induced relaxation of the guinea pig stomach.
    Desai KM; Warner TD; Bishop AE; Polak JM; Vane JR
    Br J Pharmacol; 1994 Dec; 113(4):1197-202. PubMed ID: 7534182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release.
    Grider JR; Murthy KS; Jin JG; Makhlouf GM
    Am J Physiol; 1992 Apr; 262(4 Pt 1):G774-8. PubMed ID: 1566853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of vagal input to the rat esophageal muscle.
    Storr M; Geisler F; Neuhuber WL; Schusdziarra V; Allescher HD
    Auton Neurosci; 2001 Aug; 91(1-2):1-9. PubMed ID: 11515794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of capsaicin-sensitive sensory nerves in gastric adaptive relaxation in isolated guinea-pig stomachs.
    Uno H; Arakawa T; Fukuda T; Higuchi K; Kobayashi K
    Digestion; 1997; 58(3):232-9. PubMed ID: 9243118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation of dorsal motor vagal neurons evokes non-nicotinic receptor-mediated gastric relaxation.
    Krowicki ZK; Sivarao DV; Abrahams TP; Hornby PJ
    J Auton Nerv Syst; 1999 Sep; 77(2-3):83-9. PubMed ID: 10580290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stoichiometry of neurally induced VIP release, NO formation, and relaxation in rabbit and rat gastric muscle.
    Jin JG; Murthy KS; Grider JR; Makhlouf GM
    Am J Physiol; 1996 Aug; 271(2 Pt 1):G357-69. PubMed ID: 8770052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional difference between SP and NKA: relaxation of gastric muscle by SP is mediated by VIP and NO.
    Jin JG; Misra S; Grider JR; Makhlouf GM
    Am J Physiol; 1993 Apr; 264(4 Pt 1):G678-85. PubMed ID: 7682782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasoactive intestinal peptide release and L-citrulline production from isolated ganglia of the myenteric plexus: evidence for regulation of vasoactive intestinal peptide release by nitric oxide.
    Grider JR; Jin JG
    Neuroscience; 1993 May; 54(2):521-6. PubMed ID: 8101643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The vagal control of the pyloric motor function: a physiological and immunohistochemical study in cat and man.
    Edin R
    Acta Physiol Scand Suppl; 1980; 485():1-30. PubMed ID: 6163319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for VIP-induced increase in NO production in myenteric neurons of opossum internal anal sphincter.
    Chakder S; Rattan S
    Am J Physiol; 1996 Mar; 270(3 Pt 1):G492-7. PubMed ID: 8638716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastric relaxation and vasoactive intestinal peptide output in response to reflex vagal stimulation in the dog.
    Ito S; Ohga A; Ohta T
    J Physiol; 1988 Oct; 404():683-93. PubMed ID: 3253446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of nitric oxide and vasoactive intestinal peptide in the nonadrenergic-noncholinergic relaxation of the porcine retractor penis muscle.
    La J; Kim T; Sung T; Kang T; Lee J; Yang I
    Jpn J Pharmacol; 2001 Jun; 86(2):236-43. PubMed ID: 11459127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus.
    Boeckxstaens GE; Pelckmans PA; De Man JG; Bult H; Herman AG; Van Maercke YM
    Arch Int Pharmacodyn Ther; 1992; 318():107-15. PubMed ID: 1463368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat.
    Zhou SY; Lu YX; Owyang C
    Am J Physiol Gastrointest Liver Physiol; 2008 May; 294(5):G1158-64. PubMed ID: 18356537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.