BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 7602541)

  • 1. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse.
    Paton JF; Richter DW
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice.
    Ramirez JM; Quellmalz UJ; Richter DW
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):799-812. PubMed ID: 8815212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maturational changes in the respiratory rhythm generator of the mouse.
    Paton JF; Richter DW
    Pflugers Arch; 1995 May; 430(1):115-24. PubMed ID: 7667071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory synaptic inputs to the respiratory rhythm generator in the medulla isolated from newborn rats.
    Onimaru H; Arata A; Homma I
    Pflugers Arch; 1990 Dec; 417(4):425-32. PubMed ID: 1964212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana.
    Galante RJ; Kubin L; Fishman AP; Pack AI
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):545-58. PubMed ID: 9019549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of synaptic inhibition within the pre-Bötzinger complex in the cat suppresses respiratory rhythm generation in vivo.
    Pierrefiche O; Schwarzacher SW; Bischoff AM; Richter DW
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):245-54. PubMed ID: 9547397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of synaptic inhibition in turtle respiratory rhythm generation.
    Johnson SM; Wilkerson JE; Wenninger MR; Henderson DR; Mitchell GS
    J Physiol; 2002 Oct; 544(Pt 1):253-65. PubMed ID: 12356896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control.
    Bongianni F; Mutolo D; Nardone F; Pantaleo T
    Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABAAergic and glycinergic inhibition in the phrenic nucleus organizes and couples fast oscillations in motor output.
    Marchenko V; Rogers RF
    J Neurophysiol; 2009 Apr; 101(4):2134-45. PubMed ID: 19225173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAA receptor mediated fast synaptic inhibition in the rabbit brain-stem respiratory system.
    Schmid K; Böhmer G; Gebauer K
    Acta Physiol Scand; 1991 Jul; 142(3):411-20. PubMed ID: 1656705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat.
    Dutschmann M; Paton JF
    J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ethanol upon respiratory-related hypoglossal nerve output of neonatal rat brain stem slices.
    Gibson IC; Berger AJ
    J Neurophysiol; 2000 Jan; 83(1):333-42. PubMed ID: 10634876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm.
    Shao XM; Feldman JL
    Neuroscience; 2005; 130(4):1069-81. PubMed ID: 15653001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reorganisation of respiratory network activity after loss of glycinergic inhibition.
    Büsselberg D; Bischoff AM; Paton JF; Richter DW
    Pflugers Arch; 2001 Jan; 441(4):444-9. PubMed ID: 11212206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of inhibitory amino acids in control of respiratory motor output in an arterially perfused rat.
    Hayashi F; Lipski J
    Respir Physiol; 1992 Jul; 89(1):47-63. PubMed ID: 1325666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons.
    Núñez-Abades PA; Pattillo JM; Hodgson TM; Cameron WE
    J Neurophysiol; 2000 Nov; 84(5):2317-29. PubMed ID: 11067975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined blockade of glycine and calcium-dependent potassium channels abolishes the respiratory rhythm.
    Büsselberg D; Bischoff AM; Richter DW
    Neuroscience; 2003; 122(3):831-41. PubMed ID: 14622925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.