These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 7602541)
1. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse. Paton JF; Richter DW J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541 [TBL] [Abstract][Full Text] [Related]
2. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. Ramirez JM; Quellmalz UJ; Richter DW J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):799-812. PubMed ID: 8815212 [TBL] [Abstract][Full Text] [Related]
3. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission. Shao XM; Feldman JL J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241 [TBL] [Abstract][Full Text] [Related]
4. Maturational changes in the respiratory rhythm generator of the mouse. Paton JF; Richter DW Pflugers Arch; 1995 May; 430(1):115-24. PubMed ID: 7667071 [TBL] [Abstract][Full Text] [Related]
5. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat. Iizuka M J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory synaptic inputs to the respiratory rhythm generator in the medulla isolated from newborn rats. Onimaru H; Arata A; Homma I Pflugers Arch; 1990 Dec; 417(4):425-32. PubMed ID: 1964212 [TBL] [Abstract][Full Text] [Related]
7. Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana. Galante RJ; Kubin L; Fishman AP; Pack AI J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):545-58. PubMed ID: 9019549 [TBL] [Abstract][Full Text] [Related]
8. Blockade of synaptic inhibition within the pre-Bötzinger complex in the cat suppresses respiratory rhythm generation in vivo. Pierrefiche O; Schwarzacher SW; Bischoff AM; Richter DW J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):245-54. PubMed ID: 9547397 [TBL] [Abstract][Full Text] [Related]
9. Role of synaptic inhibition in turtle respiratory rhythm generation. Johnson SM; Wilkerson JE; Wenninger MR; Henderson DR; Mitchell GS J Physiol; 2002 Oct; 544(Pt 1):253-65. PubMed ID: 12356896 [TBL] [Abstract][Full Text] [Related]
10. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control. Bongianni F; Mutolo D; Nardone F; Pantaleo T Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584 [TBL] [Abstract][Full Text] [Related]
11. GABAAergic and glycinergic inhibition in the phrenic nucleus organizes and couples fast oscillations in motor output. Marchenko V; Rogers RF J Neurophysiol; 2009 Apr; 101(4):2134-45. PubMed ID: 19225173 [TBL] [Abstract][Full Text] [Related]
12. GABAA receptor mediated fast synaptic inhibition in the rabbit brain-stem respiratory system. Schmid K; Böhmer G; Gebauer K Acta Physiol Scand; 1991 Jul; 142(3):411-20. PubMed ID: 1656705 [TBL] [Abstract][Full Text] [Related]
13. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. Dutschmann M; Paton JF J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196 [TBL] [Abstract][Full Text] [Related]
14. Effect of ethanol upon respiratory-related hypoglossal nerve output of neonatal rat brain stem slices. Gibson IC; Berger AJ J Neurophysiol; 2000 Jan; 83(1):333-42. PubMed ID: 10634876 [TBL] [Abstract][Full Text] [Related]
15. Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. Shao XM; Feldman JL Neuroscience; 2005; 130(4):1069-81. PubMed ID: 15653001 [TBL] [Abstract][Full Text] [Related]
16. Reorganisation of respiratory network activity after loss of glycinergic inhibition. Büsselberg D; Bischoff AM; Paton JF; Richter DW Pflugers Arch; 2001 Jan; 441(4):444-9. PubMed ID: 11212206 [TBL] [Abstract][Full Text] [Related]
17. The role of inhibitory amino acids in control of respiratory motor output in an arterially perfused rat. Hayashi F; Lipski J Respir Physiol; 1992 Jul; 89(1):47-63. PubMed ID: 1325666 [TBL] [Abstract][Full Text] [Related]
18. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons. Núñez-Abades PA; Pattillo JM; Hodgson TM; Cameron WE J Neurophysiol; 2000 Nov; 84(5):2317-29. PubMed ID: 11067975 [TBL] [Abstract][Full Text] [Related]
19. A combined blockade of glycine and calcium-dependent potassium channels abolishes the respiratory rhythm. Büsselberg D; Bischoff AM; Richter DW Neuroscience; 2003; 122(3):831-41. PubMed ID: 14622925 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord. Bracci E; Ballerini L; Nistri A J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]