BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7603308)

  • 1. Suppression of Na+ influx in ATP-depleted hepatocytes.
    Kawanishi T; Uneyama C; Toyoda K; Ohno Y; Takanaka A; Takahashi M
    Life Sci; 1995; 57(4):355-61. PubMed ID: 7603308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late steady increase in cytosolic Ca2+ preceding hypoxic injury in hepatocytes.
    Brecht M; Brecht C; De Groot H
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):399-402. PubMed ID: 1575684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Ca2+ oscillations in cultured rat hepatocytes by chemical hypoxia.
    Kawanishi T; Nieminen AL; Herman B; Lemasters JJ
    J Biol Chem; 1991 Oct; 266(30):20062-9. PubMed ID: 1939069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoflurane preserves adenosine triphosphate levels in anoxic isolated rat hepatocytes by stimulating glycolytic adenosine triphosphate formation.
    Matsushita M; Ohashi I; Becker GL; Pohorecki R
    Anesth Analg; 1996 Jun; 82(6):1261-7. PubMed ID: 8638802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of fructose on adenosine triphosphate depletion following mitochondrial dysfunction and lethal cell injury in isolated rat hepatocytes.
    Cannon JR; Harvison PJ; Rush GF
    Toxicol Appl Pharmacol; 1991 May; 108(3):407-16. PubMed ID: 2020968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of calcium influx in isolated adult rat heart cells by ATP depletion.
    Haworth RA; Goknur AB; Hunter DR; Hegge JO; Berkoff HA
    Circ Res; 1987 Apr; 60(4):586-94. PubMed ID: 3594742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP depletion by iodoacetate and cyanide in renal distal tubular cells.
    Lash LH; Tokarz JJ; Chen Z; Pedrosi BM; Woods EB
    J Pharmacol Exp Ther; 1996 Jan; 276(1):194-205. PubMed ID: 8558430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion and recovery of ATP in V79 cells with exposure to inhibitors of glycolysis and oxidative phosphorylation.
    Marden LL; Crawford CR; Bryant RE
    In Vitro; 1982 Jun; 18(6):550-6. PubMed ID: 7118135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia.
    Bickler PE; Gallego SM; Hansen BM
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):811-9. PubMed ID: 8103057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodoacetate action on endocytic uptake of different fluid-phase markers by OK renal epithelial cells.
    Kempson SA; Kunkler KJ; Murer H
    Biochim Biophys Acta; 1991 Feb; 1091(3):324-8. PubMed ID: 2001415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion.
    Carini R; Bellomo G; Benedetti A; Fulceri R; Gamberucci A; Parola M; Dianzani MU; Albano E
    Hepatology; 1995 Apr; 21(4):1089-98. PubMed ID: 7705784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytosolic-free Ca2+ and cell killing in hepatoma 1c1c7 cells exposed to chemical anoxia.
    Nicotera P; Thor H; Orrenius S
    FASEB J; 1989 Jan; 3(1):59-64. PubMed ID: 2910738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of hypoxia and anoxia on distribution of adenine nucleotides in isolated hepatocytes.
    Dransfield DT; Aprille JR
    Arch Biochem Biophys; 1994 Aug; 313(1):156-65. PubMed ID: 8053677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose loading during primary culture has opposite effects on the viability of hepatocytes exposed to potassium cyanide and to iodoacetic acid.
    Shiroyama K; Moriwaki K; Kusunoki S; Saeki N; Yuge O
    Metabolism; 2001 Mar; 50(3):342-8. PubMed ID: 11230789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices.
    Madl JE; Burgesser K
    J Neurosci; 1993 Oct; 13(10):4429-44. PubMed ID: 8105040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a sodium-dependent calcium influx in isolated rat hepatocytes undergoing ATP depletion.
    Carini R; Bellomo G; Dianzani MU; Albano E
    Biochem Biophys Res Commun; 1994 Jul; 202(1):360-6. PubMed ID: 8037733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pH-dependent phospholipase A2 contributes to loss of plasma membrane integrity during chemical hypoxia in rat hepatocytes.
    Harrison DC; Lemasters JJ; Herman B
    Biochem Biophys Res Commun; 1991 Jan; 174(2):654-9. PubMed ID: 1899571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular acidosis protects cultured hepatocytes from the toxic consequences of a loss of mitochondrial energization.
    Masaki N; Thomas AP; Hoek JB; Farber JL
    Arch Biochem Biophys; 1989 Jul; 272(1):152-61. PubMed ID: 2735760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine protects against hepatocyte killing by KCN or hypoxia by preventing intracellular Na+ overload in the rat.
    Carini R; Bellomo G; Grazia De Cesaris M; Albano E
    Hepatology; 1997 Jul; 26(1):107-12. PubMed ID: 9214458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition.
    Nieminen AL; Saylor AK; Herman B; Lemasters JJ
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C67-74. PubMed ID: 8048493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.