These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 760381)

  • 61. The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury.
    Liberman MC
    J Neurophysiol; 1991 Jan; 65(1):123-32. PubMed ID: 1999726
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds.
    Gorga MP; Johnson TA; Kaminski JR; Beauchaine KL; Garner CA; Neely ST
    Ear Hear; 2006 Feb; 27(1):60-74. PubMed ID: 16446565
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Contralateral noise has possible asymmetric frequency-sensitive effect on the 2F1-F2 otoacoustic emission in humans.
    Atcherson SR; Martin MJ; Lintvedt R
    Neurosci Lett; 2008 Jun; 438(1):107-10. PubMed ID: 18472335
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Central denervation hypersensitivity in the auditory system of the cat.
    Gerken GM
    J Acoust Soc Am; 1979 Sep; 66(3):721-7. PubMed ID: 489843
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Using individual differences to test the role of temporal and place cues in coding frequency modulation.
    Whiteford KL; Oxenham AJ
    J Acoust Soc Am; 2015 Nov; 138(5):3093-104. PubMed ID: 26627783
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The release of acetylcholine from the cochlear nucleus upon stimulation of the crossed olivo-cochlear bundle.
    Comis SD; Guth PS
    Neuropharmacology; 1974 Jul; 13(7):633-41. PubMed ID: 4437736
    [No Abstract]   [Full Text] [Related]  

  • 67. Role of centrifugal pathways to cochlear nucleus in detection of signals in noise.
    Pickles JO; Comis SD
    J Neurophysiol; 1973 Nov; 36(6):1131-7. PubMed ID: 4761723
    [No Abstract]   [Full Text] [Related]  

  • 68. Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus.
    Nelson PC; Carney LH
    J Neurophysiol; 2007 Jan; 97(1):522-39. PubMed ID: 17079342
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Auditory detection and discrimination in deaf cats: psychophysical and neural thresholds for intracochlear electrical signals.
    Vollmer M; Beitel RE; Snyder RL
    J Neurophysiol; 2001 Nov; 86(5):2330-43. PubMed ID: 11698523
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An evoked response study of the first-order difference tone in man.
    Gorny JL; Butler RA
    Acta Otolaryngol; 1975; 80(1-2):1-6. PubMed ID: 1166769
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of level on the discrimination of harmonic and frequency-shifted complex tones at high frequencies.
    Moore BC; Sek A
    J Acoust Soc Am; 2011 May; 129(5):3206-12. PubMed ID: 21568422
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise.
    Mulders WH; Seluakumaran K; Robertson D
    Eur J Neurosci; 2008 Feb; 27(3):702-14. PubMed ID: 18279322
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise.
    Winslow RL; Sachs MB
    J Neurophysiol; 1987 Apr; 57(4):1002-21. PubMed ID: 3585452
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Organization of inhibitory frequency receptive fields in cat primary auditory cortex.
    Sutter ML; Schreiner CE; McLean M; O'connor KN; Loftus WC
    J Neurophysiol; 1999 Nov; 82(5):2358-71. PubMed ID: 10561411
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of sectioning auditory centrifugal fibers on the cochlear microphonic and action potential in guinea pigs.
    Talbott RE; Barry J; Barry SJ
    J Aud Res; 1978 Oct; 18(4):299-306. PubMed ID: 756871
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cochlear adaptation, central influences.
    Kupperman R
    Acta Otolaryngol; 1972; 73(2):130-40. PubMed ID: 5015147
    [No Abstract]   [Full Text] [Related]  

  • 77. Ipsilateral inhibitory responses in the cat lateral superior olive.
    Brownell WE; Manis PB; Ritz LA
    Brain Res; 1979 Nov; 177(1):189-93. PubMed ID: 497821
    [No Abstract]   [Full Text] [Related]  

  • 78. Functional role of auditory cortex in frequency processing and pitch perception.
    Tramo MJ; Shah GD; Braida LD
    J Neurophysiol; 2002 Jan; 87(1):122-39. PubMed ID: 11784735
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons.
    Evans EF
    Audiology; 1978; 17(5):369-420. PubMed ID: 697652
    [No Abstract]   [Full Text] [Related]  

  • 80. The auditory neurobiology of marsupials: a review.
    Aitkin L
    Hear Res; 1995 Feb; 82(2):257-66. PubMed ID: 7775290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.