BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 7603992)

  • 1. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides.
    Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6339-43. PubMed ID: 7603992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I.
    Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4076-80. PubMed ID: 2657738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thioredoxin binding domain of bacteriophage T7 DNA polymerase confers processivity on Escherichia coli DNA polymerase I.
    Bedford E; Tabor S; Richardson CC
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):479-84. PubMed ID: 9012809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.
    Astatke M; Grindley ND; Joyce CM
    J Mol Biol; 1998 Apr; 278(1):147-65. PubMed ID: 9571040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site.
    Park Y; Choi H; Lee DS; Kim Y
    Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta-L-thymidine 5'-triphosphate analogs as DNA polymerase substrates.
    Van Draanen NA; Tucker SC; Boyd FL; Trotter BW; Reardon JE
    J Biol Chem; 1992 Dec; 267(35):25019-24. PubMed ID: 1281153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermus aquaticus DNA polymerase I mutants with altered fidelity. Interacting mutations in the O-helix.
    Suzuki M; Yoshida S; Adman ET; Blank A; Loeb LA
    J Biol Chem; 2000 Oct; 275(42):32728-35. PubMed ID: 10906120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket.
    Kaushik N; Pandey VN; Modak MJ
    Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analogs of nucleotides, modified by a sugar residue and pyrimidine base, in a DNA synthesis reaction, catalyzed by Thermus aquaticus DNA polymerase].
    Savochkina LP; DÄ­achenko LB; Lukin MA; Aleksandrova LA
    Mol Biol (Mosk); 1992; 26(1):191-200. PubMed ID: 1508169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Family A and family B DNA polymerases are structurally related: evolutionary implications.
    Zhu W; Ito J
    Nucleic Acids Res; 1994 Dec; 22(24):5177-83. PubMed ID: 7816603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA polymerase active site is highly mutable: evolutionary consequences.
    Patel PH; Loeb LA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5095-100. PubMed ID: 10805772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary structure of the DNA polymerase I gene of an alpha-proteobacterium, Rhizobium leguminosarum, and comparison with other family A DNA polymerases.
    Huang YP; Downie JA; Ito J
    Curr Microbiol; 1999 Jun; 38(6):355-9. PubMed ID: 10341077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.
    Datta K; LiCata VJ
    J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
    Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity.
    Longley MJ; Ropp PA; Lim SE; Copeland WC
    Biochemistry; 1998 Jul; 37(29):10529-39. PubMed ID: 9671525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the gap. Joining of nonhomologous ends by DNA polymerases.
    King JS; Fairley CF; Morgan WF
    J Biol Chem; 1994 May; 269(18):13061-4. PubMed ID: 8175727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unnatural substrate repertoire of A, B, and X family DNA polymerases.
    Hwang GT; Romesberg FE
    J Am Chem Soc; 2008 Nov; 130(44):14872-82. PubMed ID: 18847263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced ribonucleotide incorporation by an O-helix mutant of Thermus aquaticus DNA polymerase I.
    Ogawa M; Tosaka A; Ito Y; Yoshida S; Suzuki M
    Mutat Res; 2001 Apr; 485(3):197-207. PubMed ID: 11267831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.