BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7604181)

  • 1. Theophylline and hypoxic ventilatory response in the rat isolated brainstem-spinal cord.
    Kawai A; Okada Y; Mückenhoff K; Scheid P
    Respir Physiol; 1995 Apr; 100(1):25-32. PubMed ID: 7604181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine modulates inspiratory neurons and the respiratory pattern in the brainstem of neonatal rats.
    Herlenius E; Lagercrantz H; Yamamoto Y
    Pediatr Res; 1997 Jul; 42(1):46-53. PubMed ID: 9212036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the pons in hypoxic respiratory depression in the neonatal rat.
    Okada Y; Kawai A; Mückenhoff K; Scheid P
    Respir Physiol; 1998 Jan; 111(1):55-63. PubMed ID: 9496472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of adenosine in the hypoxic ventilatory response of the newborn piglet.
    Lopes JM; Davis GM; Mullahoo K; Aranda JV
    Pediatr Pulmonol; 1994 Jan; 17(1):50-5. PubMed ID: 8108176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of volatile anesthetics on respiratory activity and chemosensitivity in the isolated brainstem-spinal cord of the newborn rat.
    Otsuka H
    Hokkaido Igaku Zasshi; 1998 Mar; 73(2):117-36. PubMed ID: 9612706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ethanol on respiratory activity in the neonatal rat brainstem-spinal cord preparation.
    Di Pasquale E; Monteau R; Hilaire G; Iscoe S
    Brain Res; 1995 Oct; 695(2):271-4. PubMed ID: 8556344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous crossed phrenic activity in the neonatal respiratory network.
    Zimmer MB; Goshgarian HG
    Exp Neurol; 2005 Aug; 194(2):530-40. PubMed ID: 16022876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theophylline-induced respiratory recovery following cervical spinal cord hemisection is augmented by serotonin 2 receptor stimulation.
    Basura GJ; Nantwi KD; Goshgarian HG
    Brain Res; 2002 Nov; 956(1):1-13. PubMed ID: 12426040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine mediates decreased cerebral metabolic rate and increased cerebral blood flow during acute moderate hypoxia in the near-term fetal sheep.
    Blood AB; Hunter CJ; Power GG
    J Physiol; 2003 Dec; 553(Pt 3):935-45. PubMed ID: 14500776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actions of systemic theophylline on hemidiaphragmatic recovery in rats following cervical spinal cord hemisection.
    Nantwi KD; El-Bohy A; Goshgarian HG
    Exp Neurol; 1996 Jul; 140(1):53-9. PubMed ID: 8682179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory mechanisms in hypoxic respiratory depression studied in an in vitro preparation.
    Kato T; Hayashi F; Tatsumi K; Kuriyama T; Fukuda Y
    Neurosci Res; 2000 Nov; 38(3):281-8. PubMed ID: 11070195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of the peripherally mediated from the centrally mediated influences of adenosine in the rat during systemic hypoxia.
    Thomas T; Elnazir BK; Marshall JM
    Exp Physiol; 1994 Sep; 79(5):809-22. PubMed ID: 7818867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosinergic mechanisms underlying recovery of diaphragm motor function following upper cervical spinal cord injury: potential therapeutic implications.
    Nantwi KD; Goshgarian HG
    Neurol Res; 2005 Mar; 27(2):195-205. PubMed ID: 15829183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoietin and its antagonist regulate hypoxic fictive breathing in newborn mice.
    Khemiri H; Seaborn T; Gestreau C; Soliz J
    Respir Physiol Neurobiol; 2012 Aug; 183(2):115-21. PubMed ID: 22684041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats.
    Pelligrino DA; Wang Q; Koenig HM; Albrecht RF
    Brain Res; 1995 Dec; 704(1):61-70. PubMed ID: 8750962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of long-term theophylline exposure on recovery of respiratory function and expression of adenosine A1 mRNA in cervical spinal cord hemisected adult rats.
    Nantwi KD; Basura GJ; Goshgarian HG
    Exp Neurol; 2003 Jul; 182(1):232-9. PubMed ID: 12821393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laudanosine has no effects on respiratory activity but induces non-respiratory excitement activity in isolated brainstem-spinal cord preparation of neonatal rats.
    Sakuraba S; Hosokawa Y; Kaku Y; Takeda J; Kuwana S
    Adv Exp Med Biol; 2010; 669():177-80. PubMed ID: 20217344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine receptor blockade reveals N-methyl-D-aspartate receptor- and voltage-sensitive dendritic spikes in rat hippocampal CA1 pyramidal cells in vitro.
    Li H; Henry JL
    Neuroscience; 2000; 100(1):21-31. PubMed ID: 10996455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal patterns of trigeminal respiratory activity in rat brainstem-spinal cord in vitro.
    Koizumi H; Nomura K; Ishihama K; Kogo M; Matsuya T
    Neuroreport; 1999 Aug; 10(12):2609-13. PubMed ID: 10574378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkylxanthine-induced recovery of respiratory function following cervical spinal cord injury in adult rats.
    Nantwi KD; Goshgarian HG
    Exp Neurol; 2001 Mar; 168(1):123-34. PubMed ID: 11170727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.