BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 7604259)

  • 1. The structure of photolyase: using photon energy for DNA repair.
    Hearst JE
    Science; 1995 Jun; 268(5219):1858-9. PubMed ID: 7604259
    [No Abstract]   [Full Text] [Related]  

  • 2. Crystal structure of DNA photolyase from Escherichia coli.
    Park HW; Kim ST; Sancar A; Deisenhofer J
    Science; 1995 Jun; 268(5219):1866-72. PubMed ID: 7604260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced reactions of Escherichia coli DNA photolyase monitored by Fourier transform infrared spectroscopy.
    Schleicher E; Hessling B; Illarionova V; Bacher A; Weber S; Richter G; Gerwert K
    FEBS J; 2005 Apr; 272(8):1855-66. PubMed ID: 15819881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair.
    Mees A; Klar T; Gnau P; Hennecke U; Eker AP; Carell T; Essen LO
    Science; 2004 Dec; 306(5702):1789-93. PubMed ID: 15576622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclobutylpyrimidine dimer base flipping by DNA photolyase.
    Christine KS; MacFarlane AW; Yang K; Stanley RJ
    J Biol Chem; 2002 Oct; 277(41):38339-44. PubMed ID: 12169694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure and mechanism of a DNA (6-4) photolyase.
    Maul MJ; Barends TR; Glas AF; Cryle MJ; Domratcheva T; Schneider S; Schlichting I; Carell T
    Angew Chem Int Ed Engl; 2008; 47(52):10076-80. PubMed ID: 18956392
    [No Abstract]   [Full Text] [Related]  

  • 7. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.
    Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional diversity of the DNA photolyase/blue light receptor family.
    Todo T
    Mutat Res; 1999 Jun; 434(2):89-97. PubMed ID: 10422537
    [No Abstract]   [Full Text] [Related]  

  • 9. The third chromophore of DNA photolyase: Trp-277 of Escherichia coli DNA photolyase repairs thymine dimers by direct electron transfer.
    Kim ST; Li YF; Sancar A
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):900-4. PubMed ID: 1736305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family.
    Todo T; Ryo H; Yamamoto K; Toh H; Inui T; Ayaki H; Nomura T; Ikenaga M
    Science; 1996 Apr; 272(5258):109-12. PubMed ID: 8600518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.
    Li J; Uchida T; Todo T; Kitagawa T
    J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of electron transfer in Escherichia coli DNA photolyase: Trp306 to FADH.
    Cheung MS; Daizadeh I; Stuchebrukhov AA; Heelis PF
    Biophys J; 1999 Mar; 76(3):1241-9. PubMed ID: 10049308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair.
    MacFarlane AW; Stanley RJ
    Biochemistry; 2001 Dec; 40(50):15203-14. PubMed ID: 11735403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture).
    Sancar A
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8502-27. PubMed ID: 27337655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EPR, ENDOR, and TRIPLE resonance spectroscopy on the neutral flavin radical in Escherichia coli DNA photolyase.
    Kay CW; Feicht R; Schulz K; Sadewater P; Sancar A; Bacher A; Möbius K; Richter G; Weber S
    Biochemistry; 1999 Dec; 38(51):16740-8. PubMed ID: 10606505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair.
    Zhang M; Wang L; Zhong D
    Arch Biochem Biophys; 2017 Oct; 632():158-174. PubMed ID: 28802828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA photolyases and cryptochromes.
    Deisenhofer J
    Mutat Res; 2000 Aug; 460(3-4):143-9. PubMed ID: 10946225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase.
    Payne G; Sancar A
    Biochemistry; 1990 Aug; 29(33):7715-27. PubMed ID: 2271530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.
    Huang Y; Baxter R; Smith BS; Partch CL; Colbert CL; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17701-6. PubMed ID: 17101984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate binding modulates the reduction potential of DNA photolyase.
    Gindt YM; Schelvis JP; Thoren KL; Huang TH
    J Am Chem Soc; 2005 Aug; 127(30):10472-3. PubMed ID: 16045318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.