These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7605055)

  • 1. Dynamics of a mechanical monoleaflet heart valve prosthesis in the closing phase: effect of squeeze film.
    Gill-Jeong C; Chandran KB
    Ann Biomed Eng; 1995; 23(2):189-97. PubMed ID: 7605055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient behavior analysis of a mechanical monoleaflet heart valve prosthesis in the closing phase.
    Cheon GJ; Chandran KB
    J Biomech Eng; 1994 Nov; 116(4):452-9. PubMed ID: 7869721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: an in vitro study.
    Lee CS; Aluri S; Chandran KB
    J Heart Valve Dis; 1996 Jan; 5(1):104-13. PubMed ID: 8834733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic behavior analysis of mechanical monoleaflet heart valve prostheses in the opening phase.
    Cheon GJ; Chandran KB
    J Biomech Eng; 1993 Nov; 115(4A):389-95. PubMed ID: 8309233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A squeeze flow phenomenon at the closing of a bileaflet mechanical heart valve prosthesis.
    Bluestein D; Einav S; Hwang NH
    J Biomech; 1994 Nov; 27(11):1369-78. PubMed ID: 7798287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure distribution near the occluders and impact forces on the outlet struts of Björk-Shiley convexo-concave valves during closing.
    Chandran KB; Lee CS; Aluri S; Dellsperger KC; Schreck S; Wieting DW
    J Heart Valve Dis; 1996 Mar; 5(2):199-206. PubMed ID: 8665015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of squeeze-flow in tilting disc mechanical heart valves.
    Makhijani VB; Siegel JM; Hwang NH
    J Heart Valve Dis; 1996 Jan; 5(1):97-103. PubMed ID: 8834732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics.
    Zapanta CM; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1998 Nov; 7(6):655-67. PubMed ID: 9870200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method.
    Mohammadi H; Ahmadian MT; Wan WK
    Med Eng Phys; 2006 Mar; 28(2):122-33. PubMed ID: 15946890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of tip angle on cavitation potential during closure of a bileaflet prosthesis model.
    Zhang P; Yeo JH; Qian P; Hwang NH
    J Heart Valve Dis; 2007 Jul; 16(4):430-9. PubMed ID: 17702370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation.
    Chandran KB; Aluri S
    Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.
    Chandran KB; Lee CS; Chen LD
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect.
    Wu ZJ; Gao BZ; Hwang NH
    J Heart Valve Dis; 1995 Sep; 4(5):553-67. PubMed ID: 8581200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavitation dynamics of medtronic hall mechanical heart valve prosthesis: fluid squeezing effect.
    Lee CS; Chandran KB; Chen LD
    J Biomech Eng; 1996 Feb; 118(1):97-105. PubMed ID: 8833080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causes and formation of cavitation in mechanical heart valves.
    Graf T; Reul H; Detlefs C; Wilmes R; Rau G
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S49-64. PubMed ID: 8061870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occluder closing behavior: a key factor in mechanical heart valve cavitation.
    Wu ZJ; Wang Y; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S25-33; discussion S33-4. PubMed ID: 8061868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A numerical simulation of mechanical heart valve closure fluid dynamics.
    Lai YG; Chandran KB; Lemmon J
    J Biomech; 2002 Jul; 35(7):881-92. PubMed ID: 12052390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instantaneous back flow through peripheral clearance of Medtronic Hall tilting disc valve at the moment of closure.
    Lee CS; Chandran KB
    Ann Biomed Eng; 1994; 22(4):371-80. PubMed ID: 7998682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation phenomena in mechanical heart valves: the role of squeeze flow velocity and contact area on cavitation initiation between two impinging rods.
    Lim WL; Chew YT; Low HT; Foo WL
    J Biomech; 2003 Sep; 36(9):1269-80. PubMed ID: 12893035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism for cavitation of monoleaflet and bileaflet valves in an artificial heart.
    Lee H; Tatsumi E; Homma A; Tsukiya T; Taenaka Y
    J Artif Organs; 2006; 9(3):154-60. PubMed ID: 16998700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.