These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7605634)

  • 1. Characterization of spontaneous calcium transients in nerve growth cones and their effect on growth cone migration.
    Gomez TM; Snow DM; Letourneau PC
    Neuron; 1995 Jun; 14(6):1233-46. PubMed ID: 7605634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine-sensitive Ca2+ stores.
    Usachev YM; Thayer SA
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):115-30. PubMed ID: 10432343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondroitin sulfate proteoglycan elevates cytoplasmic calcium in DRG neurons.
    Snow DM; Atkinson PB; Hassinger TD; Letourneau PC; Kater SB
    Dev Biol; 1994 Nov; 166(1):87-100. PubMed ID: 7958462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeine-induced calcium release from internal stores in cultured rat sensory neurons.
    Usachev Y; Shmigol A; Pronchuk N; Kostyuk P; Verkhratsky A
    Neuroscience; 1993 Dec; 57(3):845-59. PubMed ID: 8309540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the code: regulation of neuronal differentiation by spontaneous calcium transients.
    Gu X; Spitzer NC
    Dev Neurosci; 1997; 19(1):33-41. PubMed ID: 9078431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sites of transmitter release and relation to intracellular Ca2+ in cultured sympathetic neurons.
    Przywara DA; Bhave SV; Chowdhury PS; Wakade TD; Wakade AR
    Neuroscience; 1993 Feb; 52(4):973-86. PubMed ID: 8450982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones.
    Garaschuk O; Yaari Y; Konnerth A
    J Physiol; 1997 Jul; 502 ( Pt 1)(Pt 1):13-30. PubMed ID: 9234194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium transient activity in cultured murine neural crest cells is regulated at the IP(3) receptor.
    Carey MB; Matsumoto SG
    Brain Res; 2000 Apr; 862(1-2):201-10. PubMed ID: 10799686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of cytosolic calcium in differentiating rat pheochromocytoma cells on calcium channels and intracellular stores.
    Reber BF; Reuter H
    J Physiol; 1991 Apr; 435():145-62. PubMed ID: 1663159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of the ryanodine-sensitive release channels that underlie caffeine-induced Ca2+ mobilization from intracellular stores in mammalian sympathetic neurons.
    Hernández-Cruz A; Díaz-Muñoz M; Gómez-Chavarín M; Cañedo-Merino R; Protti DA; Escobar AL; Sierralta J; Suárez-Isla BA
    Eur J Neurosci; 1995 Aug; 7(8):1684-99. PubMed ID: 7582123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones.
    Krizaj D; Lai FA; Copenhagen DR
    J Physiol; 2003 Mar; 547(Pt 3):761-74. PubMed ID: 12562925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal control of intracellular free Ca2+ in chick sensory neurons.
    Mironov SL; Usachev YuM ; Lux HD
    Pflugers Arch; 1993 Jul; 424(2):183-91. PubMed ID: 8414905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones.
    Kano M; Garaschuk O; Verkhratsky A; Konnerth A
    J Physiol; 1995 Aug; 487(1):1-16. PubMed ID: 7473240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ryanodine- and thapsigargin-insensitive Ca2+-induced Ca2+ release is primed by lowering external Ca2+ in rabbit autonomic neurons.
    Nohmi M; Hua SY; Liu C; Kuba K
    Pflugers Arch; 2000 Aug; 440(4):588-99. PubMed ID: 10958343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual action of thapsigargin on calcium mobilization in sensory neurons: inhibition of Ca2+ uptake by caffeine-sensitive pools and blockade of plasmalemmal Ca2+ channels.
    Shmigol A; Kostyuk P; Verkhratsky A
    Neuroscience; 1995 Apr; 65(4):1109-18. PubMed ID: 7617166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium channel subtypes responsible for voltage-gated intracellular calcium elevations in embryonic rat motoneurons.
    Scamps F; Valentin S; Dayanithi G; Valmier J
    Neuroscience; 1998 Dec; 87(3):719-30. PubMed ID: 9758236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of action potential-triggered [Ca2+]i transients in single smooth muscle cells of guinea-pig ileum.
    Kohda M; Komori S; Unno T; Ohashi H
    Br J Pharmacol; 1997 Oct; 122(3):477-86. PubMed ID: 9351504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice.
    Bouron A; Altafaj X; Boisseau S; De Waard M
    Brain Res Dev Brain Res; 2005 Sep; 159(1):64-71. PubMed ID: 16099516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laminin directs growth cone navigation via two temporally and functionally distinct calcium signals.
    Kuhn TB; Williams CV; Dou P; Kater SB
    J Neurosci; 1998 Jan; 18(1):184-94. PubMed ID: 9412499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodation of mouse DRG growth cones to electrically induced collapse: kinetic analysis of calcium transients and set-point theory.
    Fields RD; Guthrie PB; Russell JT; Kater SB; Malhotra BS; Nelson PG
    J Neurobiol; 1993 Aug; 24(8):1080-98. PubMed ID: 8409969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.