BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7606490)

  • 1. Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics.
    Lénárd L; Karádi Z; Faludi B; Czurkó A; Niedetzky C; Vida I; Nishino H
    Brain Res Bull; 1995; 37(2):149-55. PubMed ID: 7606490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-sensitive neurons of the globus pallidus: II. Complex functional attributes.
    Karádi Z; Faludi B; Lénárd L; Czurkó A; Niedetzky C; Vida I; Nishino H
    Brain Res Bull; 1995; 37(2):157-62. PubMed ID: 7606491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of forebrain glucose-monitoring neurons in the central control of feeding: I. Behavioral properties and neurotransmitter sensitivities.
    Lénárd L; Karádi Z; Faludi B; Hernádi I
    Neurobiology (Bp); 1995; 3(3-4):223-39. PubMed ID: 8696292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of lateral hypothalamic glucose-sensitive and glucose-insensitive neurons to chemical stimuli in behaving rhesus monkeys.
    Karádi Z; Oomura Y; Nishino H; Scott TR; Lénárd L; Aou S
    J Neurophysiol; 1992 Feb; 67(2):389-400. PubMed ID: 1569466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of electrophoretically applied neurochemicals on activity of extrapyramidal and limbic neurons in the rat.
    Czurkó A; Faludi B; Vida I; Niedetzky C; Hajnal A; Karádi Z; Lénárd L
    Acta Biochim Biophys Hung; 1991-1992; 26(1-4):57-60. PubMed ID: 1688239
    [No Abstract]   [Full Text] [Related]  

  • 6. Role of forebrain glucose-monitoring neurons in the central control of feeding: II. Complex functional attributes.
    Karádi Z; Faludi B; Hernádi I; Lénárd L
    Neurobiology (Bp); 1995; 3(3-4):241-56. PubMed ID: 8696293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D2 antagonist-induced c-fos in an identified subpopulation of globus pallidus neurons by a direct intrapallidal action.
    Billings LM; Marshall JF
    Brain Res; 2003 Feb; 964(2):237-43. PubMed ID: 12576184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of forebrain neurons to the MAO-B blocker L-deprenyl.
    Czurkó A; Faludi B; Karádi Z; Vida I; Niedetzky C; Knoll J; Lénárd L
    Brain Res Bull; 1995; 36(3):241-9. PubMed ID: 7697377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata.
    Celada P; Paladini CA; Tepper JM
    Neuroscience; 1999 Mar; 89(3):813-25. PubMed ID: 10199615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: comparison with the dorsal globus pallidus.
    Napier TC; Simson PE; Givens BS
    J Pharmacol Exp Ther; 1991 Jul; 258(1):249-62. PubMed ID: 1677041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA-containing neurons.
    Hoover BR; Marshall JF
    Synapse; 2004 May; 52(2):100-13. PubMed ID: 15034916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical anatomy of pallidal afferents in primates.
    Eid L; Parent M
    Brain Struct Funct; 2016 Dec; 221(9):4291-4317. PubMed ID: 27028222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotensin effects on N-type calcium currents among rat pallidal neurons: an electrophysiological and immunohistochemical study.
    Martorana A; Martella G; D'Angelo V; Fusco FR; Spadoni F; Bernardi G; Stefani A
    Synapse; 2006 Oct; 60(5):371-83. PubMed ID: 16838364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine and acetylcholine sensitivity of rat lateral hypothalamic neurons related to learning.
    Ono T; Nakamura K; Fukuda M; Kobayashi T
    J Neurophysiol; 1992 Feb; 67(2):265-79. PubMed ID: 1569461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional heterogeneity of the monkey lateral hypothalamus in the control of feeding.
    Aou S; Takaki A; Karádi Z; Hori T; Nishino H; Oomura Y
    Brain Res Bull; 1991; 27(3-4):451-5. PubMed ID: 1959045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression.
    Marshall JF; Henry BL; Billings LM; Hoover BR
    Neuroscience; 2001; 105(2):365-78. PubMed ID: 11672604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-monitoring neurons in the mediodorsal prefrontal cortex.
    Nagy B; Szabó I; Papp S; Takács G; Szalay C; Karádi Z
    Brain Res; 2012 Mar; 1444():38-44. PubMed ID: 22330723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat.
    Ogura M; Kita H
    J Neurophysiol; 2000 Jun; 83(6):3366-76. PubMed ID: 10848555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation by nicotine of the spontaneous release of [3H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat.
    Kayadjanian N; Rétaux S; Menétrey A; Besson MJ
    Brain Res; 1994 Jun; 649(1-2):129-35. PubMed ID: 7953625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters.
    Galvan A; Villalba RM; West SM; Maidment NT; Ackerson LC; Smith Y; Wichmann T
    J Neurophysiol; 2005 Aug; 94(2):990-1000. PubMed ID: 15829599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.