BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7606491)

  • 1. Glucose-sensitive neurons of the globus pallidus: II. Complex functional attributes.
    Karádi Z; Faludi B; Lénárd L; Czurkó A; Niedetzky C; Vida I; Nishino H
    Brain Res Bull; 1995; 37(2):157-62. PubMed ID: 7606491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of lateral hypothalamic glucose-sensitive and glucose-insensitive neurons to chemical stimuli in behaving rhesus monkeys.
    Karádi Z; Oomura Y; Nishino H; Scott TR; Lénárd L; Aou S
    J Neurophysiol; 1992 Feb; 67(2):389-400. PubMed ID: 1569466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics.
    Lénárd L; Karádi Z; Faludi B; Czurkó A; Niedetzky C; Vida I; Nishino H
    Brain Res Bull; 1995; 37(2):149-55. PubMed ID: 7606490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of forebrain glucose-monitoring neurons in the central control of feeding: II. Complex functional attributes.
    Karádi Z; Faludi B; Hernádi I; Lénárd L
    Neurobiology (Bp); 1995; 3(3-4):241-56. PubMed ID: 8696293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of forebrain glucose-monitoring neurons in the central control of feeding: I. Behavioral properties and neurotransmitter sensitivities.
    Lénárd L; Karádi Z; Faludi B; Hernádi I
    Neurobiology (Bp); 1995; 3(3-4):223-39. PubMed ID: 8696292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex attributes of lateral hypothalamic neurons in the regulation of feeding of alert rhesus monkeys.
    Karádi Z; Oomura Y; Nishino H; Scott TR; Lénárd L; Aou S
    Brain Res Bull; 1990 Dec; 25(6):933-9. PubMed ID: 2289175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory coding in the monkey lateral hypothalamus: behavioral and neurochemical properties of odor-responding neurons.
    Karádi Z; Oomura Y; Nishino H; Aou S
    Physiol Behav; 1989 Jun; 45(6):1249-57. PubMed ID: 2813550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex functional attributes of amygdaloid gustatory neurons in the rhesus monkey.
    Karádi Z; Scott TR; Oomura Y; Nishino H; Aou S; Lénárd L
    Ann N Y Acad Sci; 1998 Nov; 855():488-92. PubMed ID: 9929644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taste and olfactory modulation of feeding related neurons in behaving monkey.
    Oomura Y; Nishino H; Karadi Z; Aou S; Scott TR
    Physiol Behav; 1991 May; 49(5):943-50. PubMed ID: 1653435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional role of the limbic system and basal ganglia in motivated behaviors.
    Ono T; Nishijo H; Nishino H
    J Neurol; 2000 Sep; 247 Suppl 5():V23-32. PubMed ID: 11081801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal and external information processing by lateral hypothalamic glucose-sensitive and insensitive neurons during bar press feeding in the monkey.
    Nishino H; Oomura Y; Karádi Z; Lénárd L; Kai Y; Fukuda A; Ito C; Min BI; Salaman CP
    Brain Res Bull; 1988 Jun; 20(6):839-45. PubMed ID: 2842007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement and non-movement related pallidal unit activity during bar press feeding behavior in the monkey.
    Nishino H; Ono T; Muramoto K; Fukuda M; Sasaki K
    Behav Brain Res; 1985 Jan; 15(1):27-42. PubMed ID: 3977985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of forebrain neurons to the MAO-B blocker L-deprenyl.
    Czurkó A; Faludi B; Karádi Z; Vida I; Niedetzky C; Knoll J; Lénárd L
    Brain Res Bull; 1995; 36(3):241-9. PubMed ID: 7697377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey.
    Filion M
    Brain Res; 1979 Dec; 178(2-3):425-41. PubMed ID: 116713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional heterogeneity of the monkey lateral hypothalamus in the control of feeding.
    Aou S; Takaki A; Karádi Z; Hori T; Nishino H; Oomura Y
    Brain Res Bull; 1991; 27(3-4):451-5. PubMed ID: 1959045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic control of rat substantia nigra dopaminergic neurons: role of globus pallidus and substantia nigra pars reticulata.
    Celada P; Paladini CA; Tepper JM
    Neuroscience; 1999 Mar; 89(3):813-25. PubMed ID: 10199615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-monitoring neurons in the mediodorsal prefrontal cortex.
    Nagy B; Szabó I; Papp S; Takács G; Szalay C; Karádi Z
    Brain Res; 2012 Mar; 1444():38-44. PubMed ID: 22330723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters.
    Galvan A; Villalba RM; West SM; Maidment NT; Ackerson LC; Smith Y; Wichmann T
    J Neurophysiol; 2005 Aug; 94(2):990-1000. PubMed ID: 15829599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further characterization of preproenkephalin mRNA-containing cells in the rodent globus pallidus.
    Hoover BR; Marshall JF
    Neuroscience; 2002; 111(1):111-25. PubMed ID: 11955716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single neuron activity changes to interleukin-1beta in the orbitofrontal cortex of the rat.
    Lukáts B; Egyed R; Karádi Z
    Brain Res; 2005 Mar; 1038(2):243-6. PubMed ID: 15757641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.