BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7606491)

  • 21. Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes.
    Mink JW; Thach WT
    J Neurophysiol; 1991 Feb; 65(2):273-300. PubMed ID: 2016642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavioral significance of monkey hypothalamic glucose-sensitive neurons.
    Aou S; Oomura Y; Lénárd L; Nishino H; Inokuchi A; Minami T; Misaki H
    Brain Res; 1984 Jun; 302(1):69-74. PubMed ID: 6733507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo.
    Chen L; Xu R; Sun FJ; Xue Y; Hao XM; Liu HX; Wang H; Chen XY; Liu ZR; Deng WS; Han XH; Xie JX; Yung WH
    Mol Cell Neurosci; 2015 Sep; 68():46-55. PubMed ID: 25858108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat.
    Ogura M; Kita H
    J Neurophysiol; 2000 Jun; 83(6):3366-76. PubMed ID: 10848555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression.
    Marshall JF; Henry BL; Billings LM; Hoover BR
    Neuroscience; 2001; 105(2):365-78. PubMed ID: 11672604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orexin-A increases the activity of globus pallidus neurons in both normal and parkinsonian rats.
    Xue Y; Yang YT; Liu HY; Chen WF; Chen AQ; Sheng Q; Chen XY; Wang Y; Chen H; Liu HX; Pang YY; Chen L
    Eur J Neurosci; 2016 Sep; 44(5):2247-57. PubMed ID: 27336845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activity of neurons in cerebellar-receiving and pallidal-receiving areas of the thalamus of the behaving monkey.
    Anderson ME; Turner RS
    J Neurophysiol; 1991 Sep; 66(3):879-93. PubMed ID: 1753292
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA-containing neurons.
    Hoover BR; Marshall JF
    Synapse; 2004 May; 52(2):100-13. PubMed ID: 15034916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of nitric oxide on the spontaneous activity of globus pallidus neurones in the rat.
    Sardo P; Ferraro G; Di Giovanni G; Galati S; La Grutta V
    J Neural Transm (Vienna); 2002 Nov; 109(11):1373-89. PubMed ID: 12454734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of electrophoretically applied neurochemicals on activity of extrapyramidal and limbic neurons in the rat.
    Czurkó A; Faludi B; Vida I; Niedetzky C; Hajnal A; Karádi Z; Lénárd L
    Acta Biochim Biophys Hung; 1991-1992; 26(1-4):57-60. PubMed ID: 1688239
    [No Abstract]   [Full Text] [Related]  

  • 31. D2 antagonist-induced c-fos in an identified subpopulation of globus pallidus neurons by a direct intrapallidal action.
    Billings LM; Marshall JF
    Brain Res; 2003 Feb; 964(2):237-43. PubMed ID: 12576184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrophysiological effects of neurotensin on globus pallidus neurons of 6-hydroxydopamine-lesioned rats.
    Xue Y; Bai B; Yung WH; Chen L
    Neurosignals; 2009; 17(2):153-61. PubMed ID: 19202346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: comparison with the dorsal globus pallidus.
    Napier TC; Simson PE; Givens BS
    J Pharmacol Exp Ther; 1991 Jul; 258(1):249-62. PubMed ID: 1677041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microelectrophoretic application of kainic acid into the globus pallidus: disturbances in feeding behavior.
    Sándor P; Hajnal A; Jandó G; Karádi Z; Lénárd L
    Brain Res Bull; 1992 May; 28(5):751-6. PubMed ID: 1617459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nociceptive responses in the neostriatum and globus pallidus of the anesthetized rat.
    Chudler EH; Sugiyama K; Dong WK
    J Neurophysiol; 1993 Jun; 69(6):1890-903. PubMed ID: 8350129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding.
    Hamada I; DeLong MR
    J Neurophysiol; 1992 Nov; 68(5):1859-66. PubMed ID: 1479449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping of globus pallidus and ventral pallidum lesions that produce hyperkinetic treading.
    Cromwell HC; Berridge KC
    Brain Res; 1994 Dec; 668(1-2):16-29. PubMed ID: 7704601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels.
    Lee CR; Abercrombie ED; Tepper JM
    Neuroscience; 2004; 129(2):481-9. PubMed ID: 15501605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity and distribution patterns of monkey pallidal neurons in response to peripheral nerve stimulation.
    Akazawa T; Takada M; Nambu A
    Neurosci Lett; 2003 Mar; 339(2):161-5. PubMed ID: 12614919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex.
    Szabó I; Hormay E; Csetényi B; Nagy B; Lénárd L; Karádi Z
    Neurosci Biobehav Rev; 2018 Feb; 85():44-53. PubMed ID: 28455231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.