These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 7606784)
1. Linker histones are not essential and affect chromatin condensation in vivo. Shen X; Yu L; Weir JW; Gorovsky MA Cell; 1995 Jul; 82(1):47-56. PubMed ID: 7606784 [TBL] [Abstract][Full Text] [Related]
2. Four distinct and unusual linker proteins in a mitotically dividing nucleus are derived from a 71-kilodalton polyprotein, lack p34cdc2 sites, and contain protein kinase A sites. Wu M; Allis CD; Sweet MT; Cook RG; Thatcher TH; Gorovsky MA Mol Cell Biol; 1994 Jan; 14(1):10-20. PubMed ID: 8264578 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of linker histones by cAMP-dependent protein kinase in mitotic micronuclei of Tetrahymena. Sweet MT; Allis CD Chromosoma; 1993 Nov; 102(9):637-47. PubMed ID: 8306826 [TBL] [Abstract][Full Text] [Related]
4. Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila. Stargell LA; Bowen J; Dadd CA; Dedon PC; Davis M; Cook RG; Allis CD; Gorovsky MA Genes Dev; 1993 Dec; 7(12B):2641-51. PubMed ID: 8276246 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Wei Y; Yu L; Bowen J; Gorovsky MA; Allis CD Cell; 1999 Apr; 97(1):99-109. PubMed ID: 10199406 [TBL] [Abstract][Full Text] [Related]
6. Identification and mutation of phosphorylation sites in a linker histone. Phosphorylation of macronuclear H1 is not essential for viability in tetrahymena. Mizzen CA; Dou Y; Liu Y; Cook RG; Gorovsky MA; Allis CD J Biol Chem; 1999 May; 274(21):14533-6. PubMed ID: 10329641 [TBL] [Abstract][Full Text] [Related]
7. Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila. Nabeel-Shah S; Ashraf K; Saettone A; Garg J; Derynck J; Lambert JP; Pearlman RE; Fillingham J Sci Rep; 2020 Jan; 10(1):168. PubMed ID: 31932604 [TBL] [Abstract][Full Text] [Related]
8. Micronucleus-specific histone H1 is required for micronuclear chromosome integrity in Tetrahymena thermophila. Qiao J; Xu J; Bo T; Wang W PLoS One; 2017; 12(11):e0187475. PubMed ID: 29095884 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Wei Y; Mizzen CA; Cook RG; Gorovsky MA; Allis CD Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7480-4. PubMed ID: 9636175 [TBL] [Abstract][Full Text] [Related]
10. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. Cervantes MD; Xi X; Vermaak D; Yao MC; Malik HS Mol Biol Cell; 2006 Jan; 17(1):485-97. PubMed ID: 16251352 [TBL] [Abstract][Full Text] [Related]
11. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Cui B; Gorovsky MA Mol Cell Biol; 2006 Jun; 26(12):4499-510. PubMed ID: 16738316 [TBL] [Abstract][Full Text] [Related]
12. Cell-cycle regulation as a mechanism for targeting proteins to specific DNA sequences in Tetrahymena thermophila. Wu M; Allis CD; Gorovsky MA Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2205-9. PubMed ID: 3353376 [TBL] [Abstract][Full Text] [Related]
13. Modulation of linker histones during development in Tetrahymena: selective elimination of linker histone during the differentiation of new macronuclei. Chicoine LG; Wenkert D; Richman R; Wiggins JC; Allis CD Dev Biol; 1985 May; 109(1):1-8. PubMed ID: 3886450 [TBL] [Abstract][Full Text] [Related]
14. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila. Malone CD; Anderson AM; Motl JA; Rexer CH; Chalker DL Mol Cell Biol; 2005 Oct; 25(20):9151-64. PubMed ID: 16199890 [TBL] [Abstract][Full Text] [Related]
15. Absence of histone F1 in a mitotically dividing, genetically inactive nucleus. Gorovsky MA; Keevert JB Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2672-6. PubMed ID: 809768 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylated and dephosphorylated linker histone H1 reside in distinct chromatin domains in Tetrahymena macronuclei. Lu MJ; Mpoke SS; Dadd CA; Allis CD Mol Biol Cell; 1995 Aug; 6(8):1077-87. PubMed ID: 7579709 [TBL] [Abstract][Full Text] [Related]
17. Histone rearrangements accompany nuclear differentiation and dedifferentiation in Tetrahymena. Allis CD; Wiggins JC Dev Biol; 1984 Feb; 101(2):282-94. PubMed ID: 6692982 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation of linker histones by a protein kinase A-like activity in mitotic nuclei. Sweet MT; Carlson G; Cook RG; Nelson D; Allis CD J Biol Chem; 1997 Jan; 272(2):916-23. PubMed ID: 8995382 [TBL] [Abstract][Full Text] [Related]
19. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Shen X; Gorovsky MA Cell; 1996 Aug; 86(3):475-83. PubMed ID: 8756729 [TBL] [Abstract][Full Text] [Related]
20. RNA polymerase II localizes in Tetrahymena thermophila meiotic micronuclei when micronuclear transcription associated with genome rearrangement occurs. Mochizuki K; Gorovsky MA Eukaryot Cell; 2004 Oct; 3(5):1233-40. PubMed ID: 15470252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]