These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7607098)

  • 1. Hemispheric asymmetry of event-related potentials in a patient with callosal disconnection syndrome: a comparison of auditory, visual and somatosensory modalities.
    Satomi K; Horai T; Kinoshita Y; Wakazono A
    Electroencephalogr Clin Neurophysiol; 1995 Jun; 94(6):440-9. PubMed ID: 7607098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter- and intra-hemispheric processing of visual event-related potentials in the absence of the corpus callosum.
    Bayard S; Gosselin N; Robert M; Lassonde M
    J Cogn Neurosci; 2004 Apr; 16(3):401-14. PubMed ID: 15072676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human auditory and somatosensory event-related potentials: effects of response condition and age.
    Barrett G; Neshige R; Shibasaki H
    Electroencephalogr Clin Neurophysiol; 1987 Apr; 66(4):409-19. PubMed ID: 2435521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temporal-parietal lesions on the somatosensory P3 to lower limb stimulation.
    Yamaguchi S; Knight RT
    Electroencephalogr Clin Neurophysiol; 1992; 84(2):139-48. PubMed ID: 1372228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced interhemispheric transmission in schizophrenia patients: evidence from event-related potentials.
    Endrass T; Mohr B; Rockstroh B
    Neurosci Lett; 2002 Mar; 320(1-2):57-60. PubMed ID: 11849763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early asymmetric inter-hemispheric transfer in the auditory network: insights from infants with corpus callosum agenesis.
    Adibpour P; Dubois J; Moutard ML; Dehaene-Lambertz G
    Brain Struct Funct; 2018 Jul; 223(6):2893-2905. PubMed ID: 29687282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-density ERP study reveals latency, amplitude, and topographical differences in multiple sclerosis patients versus controls.
    Whelan R; Lonergan R; Kiiski H; Nolan H; Kinsella K; Bramham J; O'Brien M; Reilly RB; Hutchinson M; Tubridy N
    Clin Neurophysiol; 2010 Sep; 121(9):1420-1426. PubMed ID: 20381418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P300, handedness, and corpus callosal size: gender, modality, and task.
    Hoffman LD; Polich J
    Int J Psychophysiol; 1999 Jan; 31(2):163-74. PubMed ID: 9987062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P300 hemispheric amplitude asymmetries from a visual oddball task.
    Alexander JE; Porjesz B; Bauer LO; Kuperman S; Morzorati S; O'Connor SJ; Rohrbaugh J; Begleiter H; Polich J
    Psychophysiology; 1995 Sep; 32(5):467-75. PubMed ID: 7568641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracranial ERPs in humans during a lateralized visual oddball task: II. Temporal, parietal, and frontal recordings.
    Clarke JM; Halgren E; Chauvel P
    Clin Neurophysiol; 1999 Jul; 110(7):1226-44. PubMed ID: 10423188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early visual evoked potentials in callosal agenesis.
    Barr MS; Hamm JP; Kirk IJ; Corballis MC
    Neuropsychology; 2005 Nov; 19(6):707-27. PubMed ID: 16351347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-related potential (ERP) asymmetries to emotional stimuli in a visual half-field paradigm.
    Kayser J; Tenke C; Nordby H; Hammerborg D; Hugdahl K; Erdmann G
    Psychophysiology; 1997 Jul; 34(4):414-26. PubMed ID: 9260494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex differences in callosal transfer and hemispheric specialization for face coding.
    Proverbio AM; Mazzara R; Riva F; Manfredi M
    Neuropsychologia; 2012 Jul; 50(9):2325-32. PubMed ID: 22727879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pain-related and cognitive components of somatosensory evoked potentials following CO2 laser stimulation in man.
    Kanda M; Fujiwara N; Xu X; Shindo K; Nagamine T; Ikeda A; Shibasaki H
    Electroencephalogr Clin Neurophysiol; 1996 Mar; 100(2):105-14. PubMed ID: 8617149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention and visual interference stimulation affect somatosensory processing: a magnetoencephalographic study.
    Lam K; Kakigi R; Mukai T; Yamasaki H
    Neuroscience; 2001; 104(3):689-703. PubMed ID: 11440802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The characteristics of the nogo-N140 component in somatosensory go/nogo tasks.
    Nakata H; Inui K; Wasaka T; Tamura Y; Kida T; Kakigi R
    Neurosci Lett; 2006 Apr; 397(3):318-22. PubMed ID: 16406341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splitting of the P3 component during dual-task processing in a patient with posterior callosal section.
    Hesselmann G; Naccache L; Cohen L; Dehaene S
    Cortex; 2013 Mar; 49(3):730-47. PubMed ID: 22542264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Right hemispheric dominancy in the auditory evoked magnetic fields for pure-tone stimuli].
    Kanno A; Nakasato N; Fujiwara S; Yoshimoto T
    No To Shinkei; 1996 Mar; 48(3):240-4. PubMed ID: 8868334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.