These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 7608110)

  • 1. Site-specific reactivities of cysteine residues in horse L-apoferritin.
    Takeda S; Yamaki M; Ebina S; Nagayama K
    J Biochem; 1995 Feb; 117(2):267-70. PubMed ID: 7608110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of crystal forms of apoferritin by site-directed mutagenesis.
    Takeda S; Yoshimura H; Endo S; Takahashi T; Nagayama K
    Proteins; 1995 Dec; 23(4):548-56. PubMed ID: 8749850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron entry route in horse spleen apoferritin. Involvement of the three-fold channels as probed by selective reaction of cysteine-126 with the spin label 4-maleimido-tempo.
    Desideri A; Stefanini S; Polizio F; Petruzzelli R; Chiancone E
    FEBS Lett; 1991 Aug; 287(1-2):10-4. PubMed ID: 1715280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPR studies of recombinant horse L-chain apoferritin and its mutant (E 53,56,57,60 Q) with haemin.
    de Val N; Hagen WR; Crichton RR
    Biometals; 2007 Feb; 20(1):21-6. PubMed ID: 16988881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins.
    Lee M; Arosio P; Cozzi A; Chasteen ND
    Biochemistry; 1994 Mar; 33(12):3679-87. PubMed ID: 8142366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Cystathionase from Bordetella avium. Role(s) of lysine 214 and cysteine residues in activity and cytotoxicity.
    Gentry-Weeks CR; Spokes J; Thompson J
    J Biol Chem; 1995 Mar; 270(13):7695-702. PubMed ID: 7706318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cysteine residues of glutathione S-transferase P: evidence for steric hindrance of substrate binding by a bulky adduct to cysteine 47.
    Nishihira J; Ishibashi T; Sakai M; Nishi S; Kumazaki T; Hatanaka Y; Tsuda S; Hikichi K
    Biochem Biophys Res Commun; 1992 Oct; 188(1):424-32. PubMed ID: 1417864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of haemin demetallation by L-chain apoferritins.
    de Val N; Declercq JP; Lim CK; Crichton RR
    J Inorg Biochem; 2012 Jul; 112():77-84. PubMed ID: 22561545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the iron entry channels in apoferritin. Chemical modification and spectroscopic studies.
    Stefanini S; Desideri A; Vecchini P; Drakenberg T; Chiancone E
    Biochemistry; 1989 Jan; 28(1):378-82. PubMed ID: 2539862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of horse spleen apoferritin reactive lysines by MALDI-TOF mass spectrometry combined with enzymatic digestion.
    Zeng Q; Reuther R; Oxsher J; Wang Q
    Bioorg Chem; 2008 Oct; 36(5):255-60. PubMed ID: 18667223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A disulfide bonding interaction role for cysteines in the extracellular domain of the thyrotropin-releasing hormone receptor.
    Cook JV; McGregor A; Lee T; Milligan G; Eidne KA
    Endocrinology; 1996 Jul; 137(7):2851-8. PubMed ID: 8770906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and EPR spectroscopic studies of demetallation of hemin by L-chain apoferritins.
    Carette N; Hagen W; Bertrand L; de Val N; Vertommen D; Roland F; Hue L; Crichton RR
    J Inorg Biochem; 2006 Aug; 100(8):1426-35. PubMed ID: 16781777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkable ability of horse spleen apoferritin to demetallate hemin and to metallate protoporphyrin IX as a function of pH.
    Crichton RR; Soruco JA; Roland F; Michaux MA; Gallois B; Précigoux G; Mahy JP; Mansuy D
    Biochemistry; 1997 Dec; 36(49):15049-54. PubMed ID: 9398231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass spectrometry studies of demetallation of haemin by recombinant horse L chain apoferritin and its mutant (E 53,56,57,60 Q).
    de Val N; Herschbach H; Potier N; Dorsselaer AV; Crichton RR
    FEBS Lett; 2006 Nov; 580(26):6275-80. PubMed ID: 17078950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of the fluorescent 4-(aminosulfonyl)-2,1,3-benzoxadiazole label from cysteine-containing peptides.
    Lauren SL; Treuheit MJ
    J Chromatogr A; 1998 Mar; 798(1-2):47-54. PubMed ID: 9542125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reactivity of sulfhydryl groups of yeast DNA dependent RNA polymerase I.
    Bull P; Wyneken U; Valenzuela P
    Nucleic Acids Res; 1982 Sep; 10(17):5149-60. PubMed ID: 6755393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of cysteinyl and serine residues of human thromboxane A2 receptor in insect cells.
    Chiang N; Kan WM; Tai HH
    Arch Biochem Biophys; 1996 Oct; 334(1):9-17. PubMed ID: 8837733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of N-terminal residues on the structural stability of recombinant horse L-chain apoferritin in an acidic environment.
    Yoshizawa K; Mishima Y; Park SY; Heddle JG; Tame JR; Iwahori K; Kobayashi M; Yamashita I
    J Biochem; 2007 Dec; 142(6):707-13. PubMed ID: 17938140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a cysteine-less human reduced folate carrier: localization of a substrate-binding domain by cysteine-scanning mutagenesis and cysteine accessibility methods.
    Cao W; Matherly LH
    Biochem J; 2003 Aug; 374(Pt 1):27-36. PubMed ID: 12749765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin.
    Okuda M; Iwahori K; Yamashita I; Yoshimura H
    Biotechnol Bioeng; 2003 Oct; 84(2):187-94. PubMed ID: 12966575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.