These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 7608783)

  • 1. Regulation of the segmental swim-generating system by a pair of identified interneurons in the leech head ganglion.
    Brodfuehrer PD; Parker HJ; Burns A; Berg M
    J Neurophysiol; 1995 Mar; 73(3):983-92. PubMed ID: 7608783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal factors influencing the decision to swim in the medicinal leech.
    Brodfuehrer PD; Burns A
    Neurobiol Learn Mem; 1995 Mar; 63(2):192-9. PubMed ID: 7663893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. I. Output connections of Tr1 and Tr2.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):489-502. PubMed ID: 3783502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. II. Role of segmental swim-initiating interneurons.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):503-10. PubMed ID: 3023603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of central interneurons in habituation of swimming activity in the medicinal leech.
    Debski EA; Friesen WO
    J Neurophysiol; 1986 May; 55(5):977-94. PubMed ID: 3711976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of leech swimming activity by the cephalic ganglia.
    Brodfuehrer PD; Friesen WO
    J Neurobiol; 1986 Nov; 17(6):697-705. PubMed ID: 3794692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Termination of leech swimming activity by a previously identified swim trigger neuron.
    O'Gara BA; Friesen WO
    J Comp Physiol A; 1995 Nov; 177(5):627-36. PubMed ID: 7473307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of cerebral ganglion neurons that induce swimming and modulate swim-related pedal ganglion neurons in Aplysia brasiliana.
    Gamkrelidze GN; Laurienti PJ; Blankenship JE
    J Neurophysiol; 1995 Oct; 74(4):1444-62. PubMed ID: 8989384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. III. Sensory inputs to Tr1 and Tr2.
    Brodfuehrer PD; Friesen WO
    J Comp Physiol A; 1986 Oct; 159(4):511-9. PubMed ID: 3023604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central pattern generator interneurons are targets for the modulatory serotonergic cerebral giant cells in the feeding system of Lymnaea.
    Yeoman MS; Brierley MJ; Benjamin PR
    J Neurophysiol; 1996 Jan; 75(1):11-25. PubMed ID: 8822538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator.
    Getting PA; Dekin MS
    J Neurophysiol; 1985 Feb; 53(2):466-80. PubMed ID: 2984350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analyses of the leech swim oscillator.
    Friesen WO; Hocker CG
    J Neurophysiol; 2001 Aug; 86(2):824-35. PubMed ID: 11495953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the tail ganglion on swimming activity in the leech.
    Brodfuehrer PD; Kogelnik AM; Friesen WO; Cohen AH
    Behav Neural Biol; 1993 Mar; 59(2):162-6. PubMed ID: 8476384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixtures of octopamine and serotonin have nonadditive effects on the CNS of the medicinal leech.
    Mesce KA; Crisp KM; Gilchrist LS
    J Neurophysiol; 2001 May; 85(5):2039-46. PubMed ID: 11353020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escape swim network interneurons have diverse roles in behavioral switching and putative arousal in Pleurobranchaea.
    Jing J; Gillette R
    J Neurophysiol; 2000 Mar; 83(3):1346-55. PubMed ID: 10712462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal elements that mediate escape swimming and suppress feeding behavior in the predatory sea slug Pleurobranchaea.
    Jing J; Gillette R
    J Neurophysiol; 1995 Nov; 74(5):1900-10. PubMed ID: 8592183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Startle phase of escape swimming is controlled by pedal motoneurons in the pteropod mollusk Clione limacina.
    Satterlie RA; Norekian TP; Robertson KJ
    J Neurophysiol; 1997 Jan; 77(1):272-80. PubMed ID: 9120569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica.
    Jing J; Gillette R
    J Neurophysiol; 1999 Feb; 81(2):654-67. PubMed ID: 10036268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.