BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7608951)

  • 1. Iron supply of staphylococci and of micrococci by alpha-ketoacids.
    Heuck D; Beer W; Reissbrodt R
    J Med Microbiol; 1995 Jul; 43(1):26-32. PubMed ID: 7608951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-regulated excretion of alpha-keto acids by Salmonella typhimurium.
    Reissbrodt R; Kingsley R; Rabsch W; Beer W; Roberts M; Williams PH
    J Bacteriol; 1997 Jul; 179(14):4538-44. PubMed ID: 9226263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases.
    Drechsel H; Thieken A; Reissbrodt R; Jung G; Winkelmann G
    J Bacteriol; 1993 May; 175(9):2727-33. PubMed ID: 8478334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron supply of Pasteurella multocida and Pasteurella haemolytica.
    Reissbrodt R; Erler W; Winkelmann G
    J Basic Microbiol; 1994; 34(1):61-3. PubMed ID: 8207666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium-induced changes in brain amino acids, alpha-ketoacids & transaminases.
    Khan SA; Siddiqui AQ; Siddiqui MA
    Indian J Med Res; 1984 Apr; 79():514-9. PubMed ID: 6490115
    [No Abstract]   [Full Text] [Related]  

  • 6. [Metabolism of alpha-ketoacids in erythromycin biosynthesis in various strains of Saccharopolyspora erythraea].
    Bulgakova VG; Grushina VA; Orlova TI; Petrykina ZM; Polin AN; Mironov VA; Danilenko VN
    Antibiot Khimioter; 1993 Jun; 38(6):14-9. PubMed ID: 8166559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TonB-dependent iron supply in Salmonella by alpha-ketoacids and alpha-hydroxyacids.
    Kingsley R; Rabsch W; Roberts M; Reissbrodt R; Williams PH
    FEMS Microbiol Lett; 1996 Jun; 140(1):65-70. PubMed ID: 8666202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid utilization by the cutaneous Micrococcaceae.
    Smith RF
    Appl Microbiol; 1971 Apr; 21(4):777-9. PubMed ID: 4930285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A serological method for distinguishing coagulase-negative staphylococci from micrococci.
    Nakhla LS
    J Clin Pathol; 1973 Jul; 26(7):511-6. PubMed ID: 4737863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of shake cultures in a semisolid thioglycolate medium for differentiating staphylococci from micrococci.
    Evans JB; Kloos WE
    Appl Microbiol; 1972 Feb; 23(2):326-31. PubMed ID: 4552889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC; Hansen AM; Lauritsen FR
    J Appl Microbiol; 2004; 96(5):1185-93. PubMed ID: 15078537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain barrier transport of the alpha-keto acid analogs of amino acids.
    Steele RD
    Fed Proc; 1986 Jun; 45(7):2060-4. PubMed ID: 3519290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of isoniazid on glucide metabolism. III. The relation between the pyruvic acid and alpha-ketoglutaric acid concentrations in the rat liver and the level of isoniazid administration. The influence of the age of the experimental animal on the isoniazid effect].
    KRULIK R
    Beitr Klin Tuberk Spezif Tuberkuloseforsch; 1962; 125():158-62. PubMed ID: 14459932
    [No Abstract]   [Full Text] [Related]  

  • 14. Iron supply of enterococci by 2-oxoacids and hydroxyacids.
    Lisiecki P; Mikucki J
    Pol J Microbiol; 2006; 55(3):195-202. PubMed ID: 17338272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific replacements of pyruvate for trophic support of central and peripheral nervous system neurons.
    Facci L; Skaper SD; Varon S
    J Neurochem; 1985 Sep; 45(3):926-34. PubMed ID: 4031868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uracil and pyruvate requirements of anaerobic growth of staphylococci.
    Evans JB
    J Clin Microbiol; 1975 Jul; 2(1):14-7. PubMed ID: 1225927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipolytic activity of Staphylococci and Micrococci.
    Rutecka-Bonin I
    Acta Microbiol Pol B; 1975; 7(1):37-43. PubMed ID: 1168399
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation and biological characterization of staphyloferrin B, a compound with siderophore activity from staphylococci.
    Haag H; Fiedler HP; Meiwes J; Drechsel H; Jung G; Zähner H
    FEMS Microbiol Lett; 1994 Jan; 115(2-3):125-30. PubMed ID: 8138126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrococci demonstrate a phosphatase activity which is repressed by phosphates and which can be differentiated from that of staphylococci.
    Satta G; D'Andrea L; Grazi G; Soro O; Varaldo PE
    Int J Syst Bacteriol; 1993 Oct; 43(4):813-8. PubMed ID: 8240961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective medium for distinguishing micrococci from staphylococci in the clinical laboratory.
    Curry JC; Borovian GE
    J Clin Microbiol; 1976 Nov; 4(5):455-7. PubMed ID: 993328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.