BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7608974)

  • 1. Crystal structure of the catalytic domain of the chemotaxis receptor methylesterase, CheB.
    West AH; Martinez-Hackert E; Stock AM
    J Mol Biol; 1995 Jul; 250(2):276-90. PubMed ID: 7608974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of methylesterase CheB: evidence of a dual role for the regulatory domain.
    Anand GS; Goudreau PN; Stock AM
    Biochemistry; 1998 Oct; 37(40):14038-47. PubMed ID: 9760239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An insight into the interaction mode between CheB and chemoreceptor from two crystal structures of CheB methylesterase catalytic domain.
    Cho KH; Crane BR; Park S
    Biochem Biophys Res Commun; 2011 Jul; 411(1):69-75. PubMed ID: 21722627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that the methylesterase of bacterial chemotaxis may be a serine hydrolase.
    Krueger JK; Stock J; Schutt CE
    Biochim Biophys Acta; 1992 Mar; 1119(3):322-6. PubMed ID: 1547277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 A resolution: comparison of the unligated enzyme and a complex with alpha-methyl-l-glutamate.
    Hester G; Stark W; Moser M; Kallen J; Marković-Housley Z; Jansonius JN
    J Mol Biol; 1999 Feb; 286(3):829-50. PubMed ID: 10024454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure at 1.8 A resolution and identification of active site residues of Sulfolobus solfataricus peptidyl-tRNA hydrolase.
    Fromant M; Schmitt E; Mechulam Y; Lazennec C; Plateau P; Blanquet S
    Biochemistry; 2005 Mar; 44(11):4294-301. PubMed ID: 15766258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a feruloyl esterase from Aspergillus niger.
    McAuley KE; Svendsen A; Patkar SA; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):878-87. PubMed ID: 15103133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase.
    Schmitt E; Mechulam Y; Fromant M; Plateau P; Blanquet S
    EMBO J; 1997 Aug; 16(15):4760-9. PubMed ID: 9303320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of S-adenosylhomocysteine hydrolase from rat liver.
    Hu Y; Komoto J; Huang Y; Gomi T; Ogawa H; Takata Y; Fujioka M; Takusagawa F
    Biochemistry; 1999 Jun; 38(26):8323-33. PubMed ID: 10387078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location of the receptor-interaction site on CheB, the methylesterase response regulator of bacterial chemotaxis.
    Barnakov AN; Barnakova LA; Hazelbauer GL
    J Biol Chem; 2001 Aug; 276(35):32984-9. PubMed ID: 11435446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of poly(3-hydroxybutyrate) hydrolysis by PhaZ7 depolymerase from Paucimonas lemoignei.
    Papageorgiou AC; Hermawan S; Singh CB; Jendrossek D
    J Mol Biol; 2008 Oct; 382(5):1184-94. PubMed ID: 18706425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine.
    Djordjevic S; Stock AM
    Structure; 1997 Apr; 5(4):545-58. PubMed ID: 9115443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5'-phosphate-dependent enzymes.
    Käck H; Sandmark J; Gibson K; Schneider G; Lindqvist Y
    J Mol Biol; 1999 Aug; 291(4):857-76. PubMed ID: 10452893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis.
    Lupas A; Stock J
    J Biol Chem; 1989 Oct; 264(29):17337-42. PubMed ID: 2677005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition.
    Nagem RA; Rojas AL; Golubev AM; Korneeva OS; Eneyskaya EV; Kulminskaya AA; Neustroev KN; Polikarpov I
    J Mol Biol; 2004 Nov; 344(2):471-80. PubMed ID: 15522299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization.
    Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y
    J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase: a new structural family with the P-loop nucleoside triphosphate hydrolase fold.
    Matte A; Goldie H; Sweet RM; Delbaere LT
    J Mol Biol; 1996 Feb; 256(1):126-43. PubMed ID: 8609605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for phosphorylation-dependent conformational changes in methylesterase CheB.
    Anand GS; Goudreau PN; Lewis JK; Stoc AM
    Protein Sci; 2000 May; 9(5):898-906. PubMed ID: 10850799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of a new enzyme, O-phosphoserine sulfhydrylase, involved in l-cysteine biosynthesis by a hyperthermophilic archaeon, Aeropyrum pernix K1, at 2.0A resolution.
    Oda Y; Mino K; Ishikawa K; Ataka M
    J Mol Biol; 2005 Aug; 351(2):334-44. PubMed ID: 16005886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.