These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 7608979)
1. Structure of the P1 helix from group I self-splicing introns. Allain FH; Varani G J Mol Biol; 1995 Jul; 250(3):333-53. PubMed ID: 7608979 [TBL] [Abstract][Full Text] [Related]
2. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. Allain FH; Varani G Nucleic Acids Res; 1995 Feb; 23(3):341-50. PubMed ID: 7885828 [TBL] [Abstract][Full Text] [Related]
3. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. Strauss-Soukup JK; Strobel SA J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738 [TBL] [Abstract][Full Text] [Related]
4. A novel RNA motif based on the structure of unusually stable 2',5'-linked r(UUCG) loops. Denisov AY; Hannoush RN; Gehring K; Damha MJ J Am Chem Soc; 2003 Sep; 125(38):11525-31. PubMed ID: 13129354 [TBL] [Abstract][Full Text] [Related]
5. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization. Strobel SA; Cech TR Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575 [TBL] [Abstract][Full Text] [Related]
6. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans. Sargueil B; Tanner NK J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. Saldanha R; Ellington A; Lambowitz AM J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500 [TBL] [Abstract][Full Text] [Related]
8. Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme. Colmenarejo G; Tinoco I J Mol Biol; 1999 Jul; 290(1):119-35. PubMed ID: 10388561 [TBL] [Abstract][Full Text] [Related]
9. NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Smith JS; Nikonowicz EP Biochemistry; 1998 Sep; 37(39):13486-98. PubMed ID: 9753434 [TBL] [Abstract][Full Text] [Related]
10. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Pley HW; Flaherty KM; McKay DB Nature; 1994 Nov; 372(6501):111-3. PubMed ID: 7526219 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides. Morosyuk SV; Lee K; SantaLucia J; Cunningham PR J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503 [TBL] [Abstract][Full Text] [Related]
12. A synthetic model for triple-helical domains in self-splicing group I introns studied by ultraviolet and circular dichroism spectroscopy. Sarkar M; Sigurdsson S; Tomac S; Sen S; Rozners E; Sjöberg BM; Strömberg R; Gräslund A Biochemistry; 1996 Apr; 35(15):4678-88. PubMed ID: 8664257 [TBL] [Abstract][Full Text] [Related]
13. NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform. Amarasinghe GK; De Guzman RN; Turner RB; Summers MF J Mol Biol; 2000 May; 299(1):145-56. PubMed ID: 10860728 [TBL] [Abstract][Full Text] [Related]
14. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity. Campbell TB; Cech TR Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205 [TBL] [Abstract][Full Text] [Related]
15. NMR structure of a bacteriophage T4 RNA hairpin involved in translational repression. Mirmira SR; Tinoco I Biochemistry; 1996 Jun; 35(24):7664-74. PubMed ID: 8672467 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA. Geese WJ; Waring RB J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164 [TBL] [Abstract][Full Text] [Related]
17. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent. Heus HA; Wijmenga SS; Hoppe H; Hilbers CW J Mol Biol; 1997 Aug; 271(1):147-58. PubMed ID: 9300061 [TBL] [Abstract][Full Text] [Related]
18. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805 [TBL] [Abstract][Full Text] [Related]
19. Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. Rüdisser S; Tinoco I J Mol Biol; 2000 Feb; 295(5):1211-23. PubMed ID: 10653698 [TBL] [Abstract][Full Text] [Related]
20. Molecular recognition in the FMN-RNA aptamer complex. Fan P; Suri AK; Fiala R; Live D; Patel DJ J Mol Biol; 1996 May; 258(3):480-500. PubMed ID: 8642604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]