These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7609478)

  • 1. Measurement of wall deformation and flow limitation in a mechanical trachea.
    Walsh C; Sullivan PA; Hansen JS; Chen LW
    J Biomech Eng; 1995 Feb; 117(1):146-52. PubMed ID: 7609478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcritical flutter in collapsible tube flow: a model of expiratory flow in the trachea.
    Walsh C; Sullivan PA; Hansen JS
    J Biomech Eng; 1991 Feb; 113(1):21-6. PubMed ID: 2020171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling expiratory flow from excised tracheal tube laws.
    Aljuri N; Freitag L; Venegas JG
    J Appl Physiol (1985); 1999 Nov; 87(5):1973-80. PubMed ID: 10562643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onset of airflow limitation in a collapsible tube model: impact of surrounding pressure, longitudinal strain, and wall folding geometry.
    Amatoury J; Kairaitis K; Wheatley JR; Bilston LE; Amis TC
    J Appl Physiol (1985); 2010 Nov; 109(5):1467-75. PubMed ID: 20829496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The critical transmural pressure of the abirway.
    Pedersen OF; Nielsen TM
    Acta Physiol Scand; 1976 Aug; 97(4):426-46. PubMed ID: 970143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelasticity of the trachea and its effects on flow limitation.
    Aljuri N; Venegas JG; Freitag L
    J Appl Physiol (1985); 2006 Feb; 100(2):384-9. PubMed ID: 16239614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of peak-flow wall shear stress in major airways of the lung.
    Green AS
    J Biomech; 2004 May; 37(5):661-7. PubMed ID: 15046995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tracheal and tongue displacement on upper airway airflow dynamics.
    Rowley JA; Permutt S; Willey S; Smith PL; Schwartz AR
    J Appl Physiol (1985); 1996 Jun; 80(6):2171-8. PubMed ID: 8806927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical solutions for steady and unsteady flow in a model of the pulmonary airways.
    Kimmel E; Kamm RD; Shapiro AH
    J Biomech Eng; 1988 Nov; 110(4):292-9. PubMed ID: 3205014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas flow between coaxial tubes: impedance to gas flow in an endotracheal tube increases with a catheter within.
    Magee PT
    Proc Inst Mech Eng H; 2012 Jun; 226(6):491-4. PubMed ID: 22783765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of an in vitro biomechanical model of the trachea using rapid prototyping.
    Walenga RL; Longest PW; Sundaresan G
    J Biomech; 2014 Jun; 47(8):1861-8. PubMed ID: 24735504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tube length on the buckling pressure of collapsible tubes.
    Zarandi MAF; Garman K; Rhee JS; Woodson BT; Garcia GJM
    Comput Biol Med; 2021 Sep; 136():104693. PubMed ID: 34364260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall motion in expiratory flow limitation: choke and flutter.
    Webster PM; Sawatzky RP; Hoffstein V; Leblanc R; Hinchey MJ; Sullivan PA
    J Appl Physiol (1985); 1985 Oct; 59(4):1304-12. PubMed ID: 4055608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite-element model of tracheal collapse.
    Begis D; Delpuech C; Le Tallec P; Loth L; Thiriet M; Vidrascu M
    J Appl Physiol (1985); 1988 Apr; 64(4):1359-68. PubMed ID: 3378971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shunt properties of large intrathoracic airways.
    Cauberghs M; Verbeken E; Van de Woestijne KP
    J Appl Physiol (1985); 1994 Jun; 76(6):2428-36. PubMed ID: 7928867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of mucus-lined tubes to steady and oscillatory airflow.
    King M; Chang HK; Weber ME
    J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1172-6. PubMed ID: 7096141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback modulation of surrounding pressure determines the onset of negative effort dependence in a collapsible tube bench model of the pharyngeal airway.
    Lambeth C; Kolevski B; Amis T; Kairaitis K
    J Appl Physiol (1985); 2017 Nov; 123(5):1118-1125. PubMed ID: 28819002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of expiratory flow limitation on respiratory mechanical impedance: a model study.
    Peslin R; Farré R; Rotger M; Navajas D
    J Appl Physiol (1985); 1996 Dec; 81(6):2399-406. PubMed ID: 9018485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscous airflow through a rigid tube with a compliant lining: a simple model for the air-mucus interaction in pulmonary airways.
    Evrensel CA; Khan RU; Elli S; Krumpe PE
    J Biomech Eng; 1993 Aug; 115(3):262-70. PubMed ID: 8231141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of inspiratory conductance quantifies flow limitation.
    Bloch KE; Russi EW; Kaplan V
    Clin Sci (Lond); 2004 Jun; 106(6):589-98. PubMed ID: 14711367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.