These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7609488)

  • 1. Estimation of cerebral blood flow from thermal measurement.
    Wei D; Saidel GM; Jones SC
    J Biomech Eng; 1995 Feb; 117(1):74-85. PubMed ID: 7609488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal diffusion probe and instrument system for tissue blood flow measurements: validation in phantoms and in vivo organs.
    Delhomme G; Newman WH; Roussel B; Jouvet M; Bowman HF; Dittmar A
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):656-62. PubMed ID: 7927386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous quantitative local cerebral blood flow measurement. Calibration of thermal conductivity measurements by the hydrogen clearance method.
    Cusick JF; Myklebust J
    Stroke; 1980; 11(6):661-4. PubMed ID: 6451956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal method for continuous measurement of cerebral perfusion.
    Wei D; Saidel GM; Jones SC
    Med Biol Eng Comput; 1994 Sep; 32(5):481-8. PubMed ID: 7845063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposed methods for the measurement of regional renal blood flow using heat transfer analysis.
    Adams T; Spielman WS; Holmes KR; Heisey SR; Chen MM
    Ann Biomed Eng; 1985; 13(3-4):237-58. PubMed ID: 3898927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of probe configuration on the measurement of bio-tissue thermal physical parameters using step-temperature technique].
    Yang K; Liu W; Luo Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1001-7. PubMed ID: 18027684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity analysis of one-dimensional heat transfer in tissue with temperature-dependent perfusion.
    Davies CR; Saidel GM; Harasaki H
    J Biomech Eng; 1997 Feb; 119(1):77-80. PubMed ID: 9083852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-heated thermistor technique to measure effective thermal properties from the tissue surface.
    Patel PA; Valvano JW; Pearce JA; Prahl SA; Denham CR
    J Biomech Eng; 1987 Nov; 109(4):330-5. PubMed ID: 3695434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel model of the pulse decay method for measurement of local tissue blood perfusion.
    Yang K; Liu W
    Med Eng Phys; 2004 Apr; 26(3):215-23. PubMed ID: 14984843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model analysis of tissue responses to transient and chronic heating.
    Liu EH; Saidel GM; Harasaki H
    Ann Biomed Eng; 2003 Sep; 31(8):1007-14. PubMed ID: 12918915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous monitoring of cerebral perfusion by thermal clearance.
    Voorhees WD; DeFord JA; Bleyer MW; Marchosky JA; Moran CJ
    Neurol Res; 1993 Apr; 15(2):75-82. PubMed ID: 8099212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spherical source model for the thermal pulse decay method of measuring blood perfusion: a sensitivity analysis.
    Diederich CJ; Clegg S; Roemer RB
    J Biomech Eng; 1989 Feb; 111(1):55-61. PubMed ID: 2747234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromachined hot-wire thermal conductivity probe for biomedical applications.
    Yi M; Panchawagh HV; Podhajsky RJ; Mahajan RL
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2477-84. PubMed ID: 19403359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The simulation of discrete vessel effects in experimental hyperthermia.
    Rawnsley RJ; Roemer RB; Dutton AW
    J Biomech Eng; 1994 Aug; 116(3):256-62. PubMed ID: 7799625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal design of a thermistor probe for surface measurement of cerebral blood flow.
    Wei DT; Saidel GM; Jones SC
    IEEE Trans Biomed Eng; 1990 Dec; 37(12):1159-72. PubMed ID: 2289790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of thermal conductivity, thermal diffusivity, and perfusion.
    Yuan DY; Valvano JW; Anderson GT
    Biomed Sci Instrum; 1993; 29():435-42. PubMed ID: 8329624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Monitor system for local cerebral blood flow. Experimental study of CBF measurement by thermal diffusion using a flow probe with a Peltier stack].
    Yamagata S; Kikuchi H; Karasawa J; Ihara I; Nagata I; Naruo Y; Takeuchi S; Shishido H; Kaneko M; Ito M
    Neurol Med Chir (Tokyo); 1986 Mar; 26(3):195-200. PubMed ID: 2426612
    [No Abstract]   [Full Text] [Related]  

  • 18. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation of a statistical model of heat transfer in perfused tissue.
    Baish JW
    J Biomech Eng; 1994 Nov; 116(4):521-7. PubMed ID: 7869729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.
    Jiang ZD; Zhao G; Lu GR
    Cryo Letters; 2016; 37(6):427-431. PubMed ID: 28072430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.