These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7609489)

  • 1. Direct in vitro determination of the patellofemoral contact force for normal knees.
    Singerman R; Berilla J; Davy DT
    J Biomech Eng; 1995 Feb; 117(1):8-14. PubMed ID: 7609489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of patella alta and patella infera on patellofemoral contact forces.
    Singerman R; Davy DT; Goldberg VM
    J Biomech; 1994 Aug; 27(8):1059-65. PubMed ID: 8089160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics.
    Hefzy MS; Yang H
    J Biomed Eng; 1993 Jul; 15(4):289-302. PubMed ID: 8361154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro forces in the normal and cruciate-deficient knee during simulated squatting motion.
    Singerman R; Berilla J; Archdeacon M; Peyser A
    J Biomech Eng; 1999 Apr; 121(2):234-42. PubMed ID: 10211459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study.
    Ostermeier S; Holst M; Hurschler C; Windhagen H; Stukenborg-Colsman C
    Knee Surg Sports Traumatol Arthrosc; 2007 May; 15(5):547-54. PubMed ID: 17225178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a computational model used to predict the patellofemoral contact pressure distribution.
    Elias JJ; Wilson DR; Adamson R; Cosgarea AJ
    J Biomech; 2004 Mar; 37(3):295-302. PubMed ID: 14757448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the lateral force acting on the patella does not consistently decrease patellofemoral pressures.
    Elias JJ; Cech JA; Weinstein DM; Cosgrea AJ
    Am J Sports Med; 2004; 32(5):1202-8. PubMed ID: 15262643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Q-angle influences tibiofemoral and patellofemoral kinematics.
    Mizuno Y; Kumagai M; Mattessich SM; Elias JJ; Ramrattan N; Cosgarea AJ; Chao EY
    J Orthop Res; 2001 Sep; 19(5):834-40. PubMed ID: 11562129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distal femoral condyle is more internally rotated to the patellar tendon at 90° of flexion in normal knees.
    Kawahara S; Okazaki K; Matsuda S; Nakahara H; Okamoto S; Iwamoto Y
    J Orthop Surg Res; 2015 Apr; 10():54. PubMed ID: 25906977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact.
    Huberti HH; Hayes WC
    J Bone Joint Surg Am; 1984 Jun; 66(5):715-24. PubMed ID: 6725318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro measurement of the tracking pattern of the human patella.
    Ahmed AM; Duncan NA; Tanzer M
    J Biomech Eng; 1999 Apr; 121(2):222-8. PubMed ID: 10211457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of in vivo patellofemoral kinematics for subjects having high-flexion total knee arthroplasty implant with patients having normal knees.
    Leszko F; Sharma A; Komistek RD; Mahfouz MR; Cates HE; Scuderi GR
    J Arthroplasty; 2010 Apr; 25(3):398-404. PubMed ID: 19232891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging of patellofemoral kinematics with weight-bearing.
    Patel VV; Hall K; Ries M; Lindsey C; Ozhinsky E; Lu Y; Majumdar S
    J Bone Joint Surg Am; 2003 Dec; 85(12):2419-24. PubMed ID: 14668513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading.
    Goudakos IG; König C; Schöttle PB; Taylor WR; Singh NB; Roberts I; Streitparth F; Duda GN; Heller MO
    J Biomech; 2009 Nov; 42(15):2590-6. PubMed ID: 19656517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in patellofemoral kinematics due to changes in quadriceps loading configuration during in vitro testing.
    Shalhoub S; Maletsky LP
    J Biomech; 2014 Jan; 47(1):130-6. PubMed ID: 24268796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of patellofemoral contact forces following anterior displacement of the tibial tubercle.
    Singerman R; White C; Davy DT
    J Orthop Res; 1995 Mar; 13(2):279-85. PubMed ID: 7722765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical effects of kneeling after total knee arthroplasty.
    Wilkens KJ; Duong LV; McGarry MH; Kim WC; Lee TQ
    J Bone Joint Surg Am; 2007 Dec; 89(12):2745-51. PubMed ID: 18056508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics of the patella in deep flexion. Analysis with magnetic resonance imaging.
    Nakagawa S; Kadoya Y; Kobayashi A; Tatsumi I; Nishida N; Yamano Y
    J Bone Joint Surg Am; 2003 Jul; 85(7):1238-42. PubMed ID: 12851348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.