These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7609582)

  • 1. Real-time separation of multineuron recordings with a DSP32C signal processor.
    Gädicke R; Albus K
    J Neurosci Methods; 1995 Apr; 57(2):187-93. PubMed ID: 7609582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations.
    Bar-Gad I; Ritov Y; Vaadia E; Bergman H
    J Neurosci Methods; 2001 May; 107(1-2):1-13. PubMed ID: 11389936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPICODYN: A Toolbox for the Analysis of Neuronal Network Dynamics and Connectivity from Multi-Site Spike Signal Recordings.
    Pastore VP; Godjoski A; Martinoia S; Massobrio P
    Neuroinformatics; 2018 Jan; 16(1):15-30. PubMed ID: 28988388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expert-like performance of an autonomous spike tracking algorithm in isolating and maintaining single units in the macaque cortex.
    Chakrabarti S; Hebert P; Wolf MT; Campos M; Burdick JW; Gail A
    J Neurosci Methods; 2012 Mar; 205(1):72-85. PubMed ID: 22227443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in multi-electrode spike sorting methods.
    Lefebvre B; Yger P; Marre O
    J Physiol Paris; 2016 Nov; 110(4 Pt A):327-335. PubMed ID: 28263793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved signal and reduced noise in neural recordings from close-spaced electrode arrays using independent component analysis as a preprocessor.
    Snellings A; Anderson DJ; Aldridge JW
    J Neurosci Methods; 2006 Jan; 150(2):254-64. PubMed ID: 16430966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.
    Regalia G; Coelli S; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2016; 2016():8416237. PubMed ID: 27239191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements.
    Harris KD; Henze DA; Csicsvari J; Hirase H; Buzsáki G
    J Neurophysiol; 2000 Jul; 84(1):401-14. PubMed ID: 10899214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike detection, characterization, and discrimination using feature analysis software written in LabVIEW.
    Stewart CM; Newlands SD; Perachio AA
    Comput Methods Programs Biomed; 2004 Dec; 76(3):239-51. PubMed ID: 15501510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the isolation quality of extracellularly recorded action potentials.
    Joshua M; Elias S; Levine O; Bergman H
    J Neurosci Methods; 2007 Jul; 163(2):267-82. PubMed ID: 17477972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of real time separation of multi-neuron recordings with a DSP32C microprocessor.
    Gädicke R; Albus K
    J Neurosci Methods; 1997 Aug; 75(2):187-92. PubMed ID: 9288651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike detection methods for polytrodes and high density microelectrode arrays.
    Swindale NV; Spacek MA
    J Comput Neurosci; 2015 Apr; 38(2):249-61. PubMed ID: 25409922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nyquist interpolation improves neuron yield in multiunit recordings.
    Blanche TJ; Swindale NV
    J Neurosci Methods; 2006 Jul; 155(1):81-91. PubMed ID: 16481043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Adaptive Means (HAM) clustering for hardware-efficient, unsupervised and real-time spike sorting.
    Paraskevopoulou SE; Wu D; Eftekhar A; Constandinou TG
    J Neurosci Methods; 2014 Sep; 235():145-56. PubMed ID: 25035965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of the Reitboeck method of multiple microelectrode recording to the neocortex of the waking monkey.
    Mountcastle VB; Reitboeck HJ; Poggio GF; Steinmetz MA
    J Neurosci Methods; 1991 Jan; 36(1):77-84. PubMed ID: 2062112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike sorting with hidden Markov models.
    Herbst JA; Gammeter S; Ferrero D; Hahnloser RH
    J Neurosci Methods; 2008 Sep; 174(1):126-34. PubMed ID: 18619490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.
    Perelman Y; Ginosar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):130-7. PubMed ID: 17260864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.