BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7609611)

  • 21. Simultaneous measurement of tyrosine hydroxylase activity and phosphorylation in bovine adrenal chromaffin cells.
    Cheah TB; Bobrovskaya L; Gonçalves CA; Hall A; Elliot R; Lengyel I; Bunn SJ; Marley PD; Dunkley PR
    J Neurosci Methods; 1999 Mar; 87(2):167-74. PubMed ID: 11230813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca(2+) mobilization, tyrosine hydroxylase activity, and signaling mechanisms in cultured porcine adrenal medullary chromaffin cells: effects of leptin.
    Takekoshi K; Ishii K; Kawakami Y; Isobe K; Nanmoku T; Nakai T
    Endocrinology; 2001 Jan; 142(1):290-8. PubMed ID: 11145592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between the nicotinic cholinergic mediated induction of tyrosine hydroxylase and release of catecholamines in bovine adrenal chromaffin cells.
    Craviso GL; Hemelt VB; Waymire JC; Larsen J; Mihaylova-Todorova ST; Westfall DP; Bjur RA
    Proc West Pharmacol Soc; 1993; 36():1-5. PubMed ID: 8104341
    [No Abstract]   [Full Text] [Related]  

  • 24. Differential inhibition of secretagogue-stimulated sodium uptake in adrenal chromaffin cells by activation of D4 and D5 dopamine receptors.
    Dahmer MK; Senogles SE
    J Neurochem; 1996 Nov; 67(5):1960-4. PubMed ID: 8863501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nicotinic acetylcholine receptor of the bovine chromaffin cell, a new target for dihydropyridines.
    López MG; Fonteríz RI; Gandía L; de la Fuente M; Villarroya M; García-Sancho J; García AG
    Eur J Pharmacol; 1993 Oct; 247(2):199-207. PubMed ID: 7506660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms involved in the transcriptional activation of proenkephalin gene expression in bovine chromaffin cells.
    Farin CJ; Kley N; Höllt V
    J Biol Chem; 1990 Nov; 265(31):19116-21. PubMed ID: 2229066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells.
    Frye RA; Holz RW
    J Neurochem; 1984 Jul; 43(1):146-50. PubMed ID: 6427410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of caffeine on Ca2+ fluxes and secretion in bovine chromaffin cells.
    Liu PS; Lin YJ; Kao LS
    Eur J Pharmacol; 1995 Nov; 291(3):265-72. PubMed ID: 8719410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of anabasine on catecholamine secretion from the perfused rat adrenal medulla.
    Hong SP; Jeong MG; Lim DY
    J Cardiol; 2007 Dec; 50(6):351-62. PubMed ID: 18186309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nicotine-induced gene expression of proenkephalin in bovine chromaffin cells.
    Wang X; Bacher B; Höllt V
    Clin Investig; 1994 Nov; 72(11):925-9. PubMed ID: 7894225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of tyrosine hydroxylase gene expression by muscarinic agonists in rat adrenal medulla.
    Piech-Dumas KM; Sterling CR; Tank AW
    J Neurochem; 1999 Jul; 73(1):153-61. PubMed ID: 10386966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells.
    Torres M; Ceballos G; Rubio R
    J Neurochem; 1994 Sep; 63(3):988-96. PubMed ID: 7519669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopaminergic inhibition of catecholamine secretion from chromaffin cells: evidence that inhibition is mediated by D4 and D5 dopamine receptors.
    Dahmer MK; Senogles SE
    J Neurochem; 1996 Jan; 66(1):222-32. PubMed ID: 8522958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells.
    Stachowiak MK; Hong JS; Viveros OH
    Brain Res; 1990 Mar; 510(2):277-88. PubMed ID: 1970506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angiotensin II type 2 receptor counter-regulates type 1 receptor in catecholamine synthesis in cultured porcine adrenal medullary chromaffin cells.
    Takekoshi K; Ishii K; Shibuya S; Kawakami Y; Isobe K; Nakai T
    Hypertension; 2002 Jan; 39(1):142-8. PubMed ID: 11799093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nicotinic cholinergic regulation of tetrahydrobiopterin levels in bovine adrenal chromaffin cells.
    Waymire JC; Ayling JE; Craviso GL
    Adv Exp Med Biol; 1993; 338():235-8. PubMed ID: 7905697
    [No Abstract]   [Full Text] [Related]  

  • 37. Mechanism of blockade by flunarizine of bovine adrenal catecholamine release.
    De la Fuente MT; Guantes JM; Del Valle M; Garcia AG
    Eur J Pharmacol; 1992 Dec; 229(2-3):189-96. PubMed ID: 1490523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of tyrosine hydroxylase in the superior cervical ganglion by nicotinic and muscarinic agonists.
    Horwitz J; Perlman RL
    J Neurochem; 1984 Aug; 43(2):546-52. PubMed ID: 6145756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of 1,1-dimethyl-4-phenylpiperazinium induced increased proenkephalin processing in bovine chromaffin cells.
    Cherdchu C; Hexum TD
    Life Sci; 1988; 43(13):1069-77. PubMed ID: 3172974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal chromaffin cells.
    Eberhard DA; Holz RW
    Cell Mol Neurobiol; 1991 Jun; 11(3):357-70. PubMed ID: 1651165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.