BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7610899)

  • 1. Observation of apical part and nerve terminals of human vestibular hair cells.
    Morita I; Komatsuzaki A; Kanda T; Tatsuoka H; Chiba T
    Acta Otolaryngol Suppl; 1995; 519():83-6. PubMed ID: 7610899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atypical innervation pattern of human vestibular hair cells.
    Morita I; Komatsuzaki A; Kanda T; Tatsuoka H; Chiba T
    Acta Otolaryngol; 1995 Jan; 115(1):31-3. PubMed ID: 7762381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The morphological differences of stereocilia and cuticular plates between type-I and type-II hair cells of human vestibular sensory epithelia.
    Morita I; Komatsuzaki A; Tatsuoka H
    ORL J Otorhinolaryngol Relat Spec; 1997; 59(4):193-7. PubMed ID: 9253022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular sensory epithelia in patients with acoustic neurinoma.
    Morita I; Komatsuzaki A; Tatsuoka H; Chiba T
    Acta Otolaryngol; 1994 Jan; 114(1):11-7. PubMed ID: 8128846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided three-dimensional reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea.
    Hashimoto S; Kimura RS; Takasaka T
    Acta Otolaryngol; 1990; 109(3-4):228-34. PubMed ID: 2316346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical localization of the GTP-binding protein G0 alpha in the vestibular epithelium and ganglion of the guinea-pig.
    Valat J; Scarfone E; Travo C; Homburger V; Sans A
    J Neurocytol; 1995 Dec; 24(12):916-24. PubMed ID: 8719819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic development of the specific vestibular hair cell pathology in a strain of the waltzing guinea pig.
    Sobin A; Anniko M
    Acta Otolaryngol; 1983; 96(5-6):397-405. PubMed ID: 6605653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided serial section reconstruction of nerve endings on the outer hair cells of the cochlea. Semithin sections vs. ultrathin sections.
    Hashimoto S; Takasaka T
    Acta Otolaryngol; 1989; 107(5-6):387-91. PubMed ID: 2756829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histopathology of the peripheral vestibular system in small vestibular schwannomas.
    Sans A; Bartolami S; Fraysse B
    Am J Otol; 1996 Mar; 17(2):326-24. PubMed ID: 8723971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sensory epithelia of the human labyrinth. A freeze-fracturing and transmission electron microscopic study.
    Bagger-Sjöbäck D; Lundquist PG; Galey F; Ylikoski J
    Am J Otol; 1983 Jan; 4(3):203-13. PubMed ID: 6829735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light and electron microscopic study of vestibular sensory epithelia in 17 cases with acoustic neurinoma.
    Matsunaga T; Kanzaki J; Shatari T; Ogawa K; O-uchi T; Hosoda Y
    Auris Nasus Larynx; 1992; 19(4):199-208. PubMed ID: 1298194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aging vestibular hair cell.
    Anniko M
    Am J Otolaryngol; 1983; 4(3):151-60. PubMed ID: 6136193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of the vestibular sensory epithelium in the mouse.
    Nordemar H
    Acta Otolaryngol; 1983; 96(5-6):447-56. PubMed ID: 6605657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vestibular findings in patients with acoustic neurinoma.
    Ylikoski J; Collan Y; Palva T
    Arch Otolaryngol; 1980 Dec; 106(12):723-6. PubMed ID: 6969073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The histochemical localization of acetylcholinesterase in the rainbow trout saccular macula by electron microscopy.
    Khan KM; Hatfield JS; Drescher MJ; Drescher DG
    Neurosci Lett; 1991 Sep; 131(1):109-12. PubMed ID: 1791968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial section reconstruction of the guinea pig outer hair cells as studied with a high-voltage electron microscope and a computer-graphic display.
    Takasaka T; Shinkawa H
    Acta Otolaryngol Suppl; 1987; 435():7-20. PubMed ID: 3478953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural organization of calcitonin gene-related peptide immunoreactive efferent axons and terminals in the vestibular periphery.
    Wackym PA
    Am J Otol; 1993 Jan; 14(1):41-50. PubMed ID: 8424475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcellular innervation patterns of the calcitonin gene-related peptidergic efferent terminals in the chinchilla vestibular periphery.
    Ishiyama A; Lopez I; Wackym PA
    Otolaryngol Head Neck Surg; 1994 Oct; 111(4):385-95. PubMed ID: 7936671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A morphological study on vestibular sensory epithelia in a strain of the waltzing guinea pig.
    Sobin A; Weraäll J
    Acta Otolaryngol Suppl; 1983; 396():1-32. PubMed ID: 6314733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early development of vestibular receptors in human embryos. An electron microscopic study.
    Sans A; Dechesne C
    Acta Otolaryngol Suppl; 1985; 423():51-8. PubMed ID: 3877400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.