These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 7610928)
1. A two-year program of aerobics and weight training enhances bone mineral density of young women. Friedlander AL; Genant HK; Sadowsky S; Byl NN; Glüer CC J Bone Miner Res; 1995 Apr; 10(4):574-85. PubMed ID: 7610928 [TBL] [Abstract][Full Text] [Related]
2. Influence of anthropometric parameters and bone size on bone mineral density using volumetric quantitative computed tomography and dual X-ray absorptiometry at the hip. Guglielmi G; van Kuijk C; Li J; Meta MD; Scillitani A; Lang TF Acta Radiol; 2006 Jul; 47(6):574-80. PubMed ID: 16875335 [TBL] [Abstract][Full Text] [Related]
3. Regular physical exercise and bone mineral density: a four-year controlled randomized trial in middle-aged men. The DNASCO study. Huuskonen J; Väisänen SB; Kröger H; Jurvelin JS; Alhava E; Rauramaa R Osteoporos Int; 2001; 12(5):349-55. PubMed ID: 11444081 [TBL] [Abstract][Full Text] [Related]
4. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. Lohman T; Going S; Pamenter R; Hall M; Boyden T; Houtkooper L; Ritenbaugh C; Bare L; Hill A; Aickin M J Bone Miner Res; 1995 Jul; 10(7):1015-24. PubMed ID: 7484276 [TBL] [Abstract][Full Text] [Related]
5. Bone density in young women is associated with body weight and muscle strength but not dietary intakes. Henderson NK; Price RI; Cole JH; Gutteridge DH; Bhagat CI J Bone Miner Res; 1995 Mar; 10(3):384-93. PubMed ID: 7785459 [TBL] [Abstract][Full Text] [Related]
6. Three-year controlled, randomized trial of the effect of dose-specified loading and strengthening exercises on bone mineral density of spine and femur in nonathletic, physically active women. Sinaki M; Wahner HW; Bergstralh EJ; Hodgson SF; Offord KP; Squires RW; Swee RG; Kao PC Bone; 1996 Sep; 19(3):233-44. PubMed ID: 8873964 [TBL] [Abstract][Full Text] [Related]
7. Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. Heinonen A; Oja P; Sievänen H; Pasanen M; Vuori I J Bone Miner Res; 1998 Mar; 13(3):483-90. PubMed ID: 9525349 [TBL] [Abstract][Full Text] [Related]
9. The Erlangen Fitness Osteoporosis Prevention Study: a controlled exercise trial in early postmenopausal women with low bone density-first-year results. Kemmler W; Engelke K; Weineck J; Hensen J; Kalender WA Arch Phys Med Rehabil; 2003 May; 84(5):673-82. PubMed ID: 12736880 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Cheng XG; Lowet G; Boonen S; Nicholson PH; Brys P; Nijs J; Dequeker J Bone; 1997 Mar; 20(3):213-8. PubMed ID: 9071471 [TBL] [Abstract][Full Text] [Related]
11. Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. Liu-Ambrose TY; Khan KM; Eng JJ; Heinonen A; McKay HA J Clin Densitom; 2004; 7(4):390-8. PubMed ID: 15618599 [TBL] [Abstract][Full Text] [Related]
12. Calcium supplementation and bone mineral accretion in Chinese adolescents aged 12-14 years: a 12-month, dose-response, randomised intervention trial. Ma XM; Huang ZW; Yang XG; Su YX Br J Nutr; 2014 Nov; 112(9):1510-20. PubMed ID: 25231730 [TBL] [Abstract][Full Text] [Related]
13. Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Engelke K; Kemmler W; Lauber D; Beeskow C; Pintag R; Kalender WA Osteoporos Int; 2006 Jan; 17(1):133-42. PubMed ID: 16096715 [TBL] [Abstract][Full Text] [Related]
14. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. Cheng XG; Nicholson PH; Boonen S; Lowet G; Brys P; Aerssens J; Van der Perre G; Dequeker J J Bone Miner Res; 1997 Oct; 12(10):1721-8. PubMed ID: 9333134 [TBL] [Abstract][Full Text] [Related]
15. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. Jergas M; Breitenseher M; Glüer CC; Yu W; Genant HK J Bone Miner Res; 1995 Jul; 10(7):1101-10. PubMed ID: 7484286 [TBL] [Abstract][Full Text] [Related]
16. Influence of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. Ruiz JC; Mandel C; Garabedian M J Bone Miner Res; 1995 May; 10(5):675-82. PubMed ID: 7639101 [TBL] [Abstract][Full Text] [Related]
17. Familial resemblance of bone mineralization, calcium intake, and physical activity in early-adolescent daughters, their mothers, and maternal grandmothers. Runyan SM; Stadler DD; Bainbridge CN; Miller SC; Moyer-Mileur LJ J Am Diet Assoc; 2003 Oct; 103(10):1320-5. PubMed ID: 14520251 [TBL] [Abstract][Full Text] [Related]
18. The effect of region of interest selection on dual energy X-ray absorptiometry measurements of the calcaneus in 55 post-menopausal women. Kang C; Speller R Br J Radiol; 1999 Sep; 72(861):864-71. PubMed ID: 10645192 [TBL] [Abstract][Full Text] [Related]
19. Long-term changes in bone mineral and biomechanical properties of vertebrae and femur in aging, dietary calcium restricted, and/or estrogen-deprived/-replaced rats. Jiang Y; Zhao J; Genant HK; Dequeker J; Geusens P J Bone Miner Res; 1997 May; 12(5):820-31. PubMed ID: 9144349 [TBL] [Abstract][Full Text] [Related]
20. Childhood growth, physical activity, and peak bone mass in women. Cooper C; Cawley M; Bhalla A; Egger P; Ring F; Morton L; Barker D J Bone Miner Res; 1995 Jun; 10(6):940-7. PubMed ID: 7572318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]