These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 7612022)

  • 41. Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation.
    Mesarch MB; Nakatsu CH; Nies L
    Water Res; 2004 Mar; 38(5):1281-8. PubMed ID: 14975661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Studies on the chirality of sulfoxidation catalyzed by bacterial flavoenzyme cyclohexanone monooxygenase and hog liver flavin adenine dinucleotide containing monooxygenase.
    Light DR; Waxman DJ; Walsh C
    Biochemistry; 1982 May; 21(10):2490-8. PubMed ID: 7093199
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3.
    Nikodinovic-Runic J; Coulombel L; Francuski D; Sharma ND; Boyd DR; Ferrall RM; O'Connor KE
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4849-58. PubMed ID: 22890778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell.
    Wang W; Xu Y; Wang DI; Li Z
    J Am Chem Soc; 2009 Sep; 131(36):12892-3. PubMed ID: 19702305
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dioxygenase-catalysed oxidation of disubstituted benzene substrates: benzylic monohydroxylation versus aryl cis-dihydroxylation and the meta effect.
    Boyd DR; Sharma ND; Bowers NI; Dalton H; Garrett MD; Harrison JS; Sheldrake GN
    Org Biomol Chem; 2006 Sep; 4(17):3343-9. PubMed ID: 17036124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidation of aromatic sulfides by lignin peroxidase from Phanerochaete chrysosporium.
    Baciocchi E; Gerini MF; Harvey PJ; Lanzalunga O; Mancinelli S
    Eur J Biochem; 2000 May; 267(9):2705-10. PubMed ID: 10785393
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biotransformation of organic sulfides--IV. Formation of chiral benzyl alkyl and phenyl alkyl sulfoxides by Helminthosporium species NRRL 4671.
    Holland HL; Brown FM; Larsen BG
    Bioorg Med Chem; 1994 Jul; 2(7):647-52. PubMed ID: 7858971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Benzene-induced uncoupling of naphthalene dioxygenase activity and enzyme inactivation by production of hydrogen peroxide.
    Lee K
    J Bacteriol; 1999 May; 181(9):2719-25. PubMed ID: 10217759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Indene bioconversion by a toluene inducible dioxygenase of Rhodococcus sp. I24.
    Priefert H; O'Brien XM; Lessard PA; Dexter AF; Choi EE; Tomic S; Nagpal G; Cho JJ; Agosto M; Yang L; Treadway SL; Tamashiro L; Wallace M; Sinskey AJ
    Appl Microbiol Biotechnol; 2004 Aug; 65(2):168-76. PubMed ID: 15069586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase.
    Kamerbeek NM; Olsthoorn AJ; Fraaije MW; Janssen DB
    Appl Environ Microbiol; 2003 Jan; 69(1):419-26. PubMed ID: 12514023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Horseradish peroxidase-catalyzed two-electron oxidations. Oxidation of iodide, thioanisoles, and phenols at distinct sites.
    Harris RZ; Newmyer SL; Ortiz de Montellano PR
    J Biol Chem; 1993 Jan; 268(3):1637-45. PubMed ID: 8420938
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes.
    Piskonen R; Nyyssönen M; Itävaara M
    Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial oxidation of naphthalene to cis-1,2-naphthalene dihydrodiol using naphthalene dioxygenase in biphasic media.
    McIver AM; Garikipati SV; Bankole KS; Gyamerah M; Peeples TL
    Biotechnol Prog; 2008; 24(3):593-8. PubMed ID: 18471025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sulfoxidation of mercapturic acids derived from tri- and tetrachloroethene by cytochromes P450 3A: a bioactivation reaction in addition to deacetylation and cysteine conjugate beta-lyase mediated cleavage.
    Werner M; Birner G; Dekant W
    Chem Res Toxicol; 1996; 9(1):41-9. PubMed ID: 8924615
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida.
    Wackett LP; Kwart LD; Gibson DT
    Biochemistry; 1988 Feb; 27(4):1360-7. PubMed ID: 3365392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High cell density cultivation of Pseudomonas putida strain HKT554 and its application for optically active sulfoxide production.
    Ramadhan SH; Matsui T; Nakano K; Minami H
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1903-7. PubMed ID: 23053095
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Opposite enantioselectivities of two phenotypically and genotypically similar strains of Pseudomonas frederiksbergensis in bacterial whole-cell sulfoxidation.
    Adam W; Heckel F; Saha-Möller CR; Taupp M; Meyer JM; Schreier P
    Appl Environ Microbiol; 2005 Apr; 71(4):2199-202. PubMed ID: 15812060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Production of dyestuffs from indole derivatives by naphthalene dioxygenase and toluene dioxygenase.
    Kim JY; Lee K; Kim Y; Kim CK; Lee K
    Lett Appl Microbiol; 2003; 36(6):343-8. PubMed ID: 12753239
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxygenation of organosulfur compounds by peroxidases: evidence of an electron transfer mechanism for lactoperoxidase.
    Doerge DR
    Arch Biochem Biophys; 1986 Feb; 244(2):678-85. PubMed ID: 3947087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.