BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7612625)

  • 1. Transversal distribution of acyl-linked pyrene moieties in liquid-crystalline phosphatidylcholine bilayers. A fluorescence quenching study.
    Sassaroli M; Ruonala M; Virtanen J; Vauhkonen M; Somerharju P
    Biochemistry; 1995 Jul; 34(27):8843-51. PubMed ID: 7612625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of phosphatidylcholine in neat and cholesterol-containing liquid-crystalline bilayers. Application of a novel method.
    Eklund KK; Virtanen JA; Kinnunen PK; Kasurinen J; Somerharju PJ
    Biochemistry; 1992 Sep; 31(36):8560-5. PubMed ID: 1390642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral organization of pyrene-labeled lipids in bilayers as determined from the deviation from equilibrium between pyrene monomers and excimers.
    Barenholz Y; Cohen T; Haas E; Ottolenghi M
    J Biol Chem; 1996 Feb; 271(6):3085-90. PubMed ID: 8621705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes.
    McIntosh TJ; Holloway PW
    Biochemistry; 1987 Mar; 26(6):1783-8. PubMed ID: 3593689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: fluorescence phase and modulation study.
    Hresko RC; Sugár IP; Barenholz Y; Thompson TE
    Biochemistry; 1986 Jul; 25(13):3813-23. PubMed ID: 3741837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing hydration and behavior of pyrene in POPC and POPC/cholesterol bilayers: a molecular dynamics study.
    Loura LM; do Canto AM; Martins J
    Biochim Biophys Acta; 2013 Mar; 1828(3):1094-101. PubMed ID: 23274277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes.
    Barenholz Y; Cohen T; Korenstein R; Ottolenghi M
    Biophys J; 1991 Jul; 60(1):110-24. PubMed ID: 1883931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in pyrene-labeled PC/DMPC binary mixtures.
    Chong PL; Tang D; Sugar IP
    Biophys J; 1994 Jun; 66(6):2029-38. PubMed ID: 8075336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of unsaturation and curvature on the transverse distribution of intramolecular dynamics of dipyrenyl lipids.
    Cheng KH; Somerharju P
    Biophys J; 1996 May; 70(5):2287-98. PubMed ID: 9172752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of Distribution Analysis of the Depth of Membrane Penetration Using Simulations and Depth-Dependent Fluorescence Quenching.
    Kyrychenko A; Rodnin MV; Ladokhin AS
    J Membr Biol; 2015 Jun; 248(3):583-94. PubMed ID: 25107303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length.
    Homan R; Pownall HJ
    Biochim Biophys Acta; 1988 Feb; 938(2):155-66. PubMed ID: 3342229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (R)-3-hydroxybutyrate dehydrogenase: selective phosphatidylcholine binding by the C-terminal domain.
    Loeb-Hennard C; McIntyre JO
    Biochemistry; 2000 Oct; 39(39):11928-38. PubMed ID: 11009606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the acyl chain specificity of the bovine liver phosphatidylcholine transfer protein. Application of pyrene-labeled phosphatidylcholine species.
    Somerharju PJ; van Loon D; Wirtz KW
    Biochemistry; 1987 Nov; 26(22):7193-9. PubMed ID: 3427069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the formation of microdomains in liquid crystalline large unilamellar vesicles caused by hydrophobic mismatch of the constituent phospholipids.
    Lehtonen JY; Holopainen JM; Kinnunen PK
    Biophys J; 1996 Apr; 70(4):1753-60. PubMed ID: 8785334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarity of lipid bilayers. A fluorescence investigation.
    Pérochon E; Lopez A; Tocanne JF
    Biochemistry; 1992 Aug; 31(33):7672-82. PubMed ID: 1510953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth.
    Kaiser RD; London E
    Biochemistry; 1998 Jun; 37(22):8180-90. PubMed ID: 9609714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lateral distribution of pyrene-labeled sphingomyelin and glucosylceramide in phosphatidylcholine bilayers.
    Hresko RC; Sugár IP; Barenholz Y; Thompson TE
    Biophys J; 1987 May; 51(5):725-33. PubMed ID: 3593870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles.
    Schroeder F; Nemecz G; Gratton E; Barenholz Y; Thompson TE
    Biophys Chem; 1988 Oct; 32(1):57-72. PubMed ID: 3233314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching in model membranes: phospholipid acyl chain distributions around small fluorophores.
    Yeager MD; Feigenson GW
    Biochemistry; 1990 May; 29(18):4380-92. PubMed ID: 2161684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene-sensitized electron transport across vesicle bilayers: Dependence of transport efficiency on pyrene substituents.
    Mizushima T; Yoshida A; Harada A; Yoneda Y; Minatani T; Murata S
    Org Biomol Chem; 2006 Dec; 4(23):4336-44. PubMed ID: 17102879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.