BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7612633)

  • 1. Cytosine methyltransferase from Escherichia coli in which active site cysteine is replaced with serine is partially active.
    Gabbara S; Sheluho D; Bhagwat AS
    Biochemistry; 1995 Jul; 34(27):8914-23. PubMed ID: 7612633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-specific and mechanism-based crosslinking of Dcm DNA cytosine-C5 methyltransferase of E. coli K-12 to synthetic oligonucleotides containing 5-fluoro-2'-deoxycytidine.
    Hanck T; Schmidt S; Fritz HJ
    Nucleic Acids Res; 1993 Jan; 21(2):303-9. PubMed ID: 8441638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reviving a dead enzyme: cytosine deaminations promoted by an inactive DNA methyltransferase and an S-adenosylmethionine analogue.
    Sharath AN; Weinhold E; Bhagwat AS
    Biochemistry; 2000 Nov; 39(47):14611-6. PubMed ID: 11087417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction of DNA cytosine methyltransferases causes methylation and C --> T mutations at non-canonical sites.
    Bandaru B; Gopal J; Bhagwat AS
    J Biol Chem; 1996 Mar; 271(13):7851-9. PubMed ID: 8631830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of inhibition of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor.
    Gabbara S; Bhagwat AS
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):87-92. PubMed ID: 7536414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cysteine conserved among DNA cytosine methylases is required for methyl transfer, but not for specific DNA binding.
    Wyszynski MW; Gabbara S; Kubareva EA; Romanova EA; Oretskaya TS; Gromova ES; Shabarova ZA; Bhagwat AS
    Nucleic Acids Res; 1993 Jan; 21(2):295-301. PubMed ID: 8441637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of Pro-185 in the ProCys of conserved motif IV in the EcoRII [cytosine-C5]-DNA methyltransferase.
    Kossykh VG; Schlagman SL; Hattman S
    FEBS Lett; 1995 Aug; 370(1-2):75-7. PubMed ID: 7649307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli.
    Wyszynski M; Gabbara S; Bhagwat AS
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1574-8. PubMed ID: 8108447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase.
    Chen L; MacMillan AM; Chang W; Ezaz-Nikpay K; Lane WS; Verdine GL
    Biochemistry; 1991 Nov; 30(46):11018-25. PubMed ID: 1932026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of the EcoRII methylase to azacytosine-containing DNA.
    Friedman S
    Nucleic Acids Res; 1986 Jun; 14(11):4543-56. PubMed ID: 2423968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auto-methylation of the mouse DNA-(cytosine C5)-methyltransferase Dnmt3a at its active site cysteine residue.
    Siddique AN; Jurkowska RZ; Jurkowski TP; Jeltsch A
    FEBS J; 2011 Jun; 278(12):2055-63. PubMed ID: 21481189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitutions of a cysteine conserved among DNA cytosine methylases result in a variety of phenotypes.
    Wyszynski MW; Gabbara S; Bhagwat AS
    Nucleic Acids Res; 1992 Jan; 20(2):319-26. PubMed ID: 1371346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DNA binding affinity of HhaI methylase is increased by a single amino acid substitution in the catalytic center.
    Mi S; Roberts RJ
    Nucleic Acids Res; 1993 May; 21(10):2459-64. PubMed ID: 8506140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and site-directed mutagenesis of aspen lignin-specific O-methyltransferase expressed in Escherichia coli.
    Meng H; Campbell WH
    Arch Biochem Biophys; 1996 Jun; 330(2):329-41. PubMed ID: 8660663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the order of substrate addition to MspI DNA methyltransferase using a novel mechanism-based inhibitor.
    Taylor C; Ford K; Connolly BA; Hornby DP
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):493-504. PubMed ID: 8484730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site.
    van Bemmel DM; Brank AS; Eritja R; Marquez VE; Christman JK
    Biochem Pharmacol; 2009 Sep; 78(6):633-41. PubMed ID: 19467223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of recA-mediated strand exchange by adducts of azacytosine-containing DNA and the EcoRII methylase.
    Huang YC; Friedman S
    J Biol Chem; 1991 Sep; 266(26):17424-9. PubMed ID: 1894630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases.
    Friedman S
    J Biol Chem; 1985 May; 260(9):5698-705. PubMed ID: 2580836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.