BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 7612696)

  • 1. On the "door-corridor" model of gel electrophoresis. III. The gel constant and resistance, and the net charge, friction, diffusion and electrokinetic force of the migrating molecules.
    Kozulić B
    Appl Theor Electrophor; 1994; 4(3):149-59. PubMed ID: 7612696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the "door-corridor" model of gel electrophoresis. I. Equations describing the relationship between mobility and size of DNA fragments and protein-SDS complexes.
    Kozulić B
    Appl Theor Electrophor; 1994; 4(3):125-36. PubMed ID: 7612694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the "door-corridor" model of gel electrophoresis. II. Developments related to new gels, capillary gel electrophoresis and gel chromatography.
    Kozulić B
    Appl Theor Electrophor; 1994; 4(3):137-48. PubMed ID: 7612695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient electric birefringence of agarose gels. I. Unidirectional electric fields.
    Stellwagen J; Stellwagen NC
    Biopolymers; 1994 Feb; 34(2):187-201. PubMed ID: 8142588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of gel electrophoresis.
    Kozulić B
    Appl Theor Electrophor; 1994; 4(3):117-23. PubMed ID: 7612693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalously slow electrophoretic mobilities of DNA restriction fragments in polyacrylamide gels are not eliminated by increasing the gel pore size.
    Stellwagen A; Stellwagen NC
    Biopolymers; 1990; 30(3-4):309-24. PubMed ID: 2177663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the gel electrophoresis of short duplex DNA by Brownian dynamics: cubic gel lattice with direct interaction.
    Allison SA; Li Z; Reed D; Stellwagen NC
    Electrophoresis; 2002 Aug; 23(16):2678-89. PubMed ID: 12210172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic migration of DNA in gels: DNA stretching and electrophoretic mobility.
    Akerman B
    Electrophoresis; 1996 Jun; 17(6):1027-36. PubMed ID: 8832168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relative contributions of dispersion and diffusion to band spreading (resolution) in gel electrophoresis.
    Yarmola E; Sokoloff H; Chrambach A
    Electrophoresis; 1996 Sep; 17(9):1416-9. PubMed ID: 8905256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of diffusion coefficients in gels using holographic laser interferometry.
    Gustafsson NO; Westrin B; Axelsson A; Zacchi G
    Biotechnol Prog; 1993; 9(4):436-41. PubMed ID: 7763911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoresis of DNA in oriented agarose gels.
    Holmes DL; Stellwagen NC
    J Biomol Struct Dyn; 1989 Oct; 7(2):311-27. PubMed ID: 2604908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress relaxation of deformed gel in a good solvent.
    Sasaki S
    J Chem Phys; 2004 Mar; 120(12):5789-94. PubMed ID: 15267458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of small-pore gels by an electrically charged agarose derivative.
    Griess GA; Guiseley KB; Miller MM; Harris RA; Serwer P
    J Struct Biol; 1998 Oct; 123(2):134-42. PubMed ID: 9843667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility, diffusion and dispersion of single-stranded DNA in sequencing gels.
    Brahmasandra SN; Burke DT; Mastrangelo CH; Burns MA
    Electrophoresis; 2001 Apr; 22(6):1046-62. PubMed ID: 11358125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits of advanced gel electrophoresis data analysis methods.
    Tietz D
    Appl Theor Electrophor; 1995; 5(2):107-11. PubMed ID: 8573597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pulse strength and pulse duration on in vitro DNA electromobility.
    Zaharoff DA; Yuan F
    Bioelectrochemistry; 2004 Apr; 62(1):37-45. PubMed ID: 14990324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change of network structure in agarose gels by aging during storage studied by NMR and electrophoresis.
    Descallar FBA; Matsukawa S
    Carbohydr Polym; 2020 Oct; 245():116497. PubMed ID: 32718610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA electrophoresis in agarose gels: effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length.
    Rill RL; Beheshti A; Van Winkle DH
    Electrophoresis; 2002 Aug; 23(16):2710-9. PubMed ID: 12210176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance field inversion capillary electrophoresis of 0.1-23 kbp DNA fragments with low-gelling, replaceable agarose gels.
    Chen N; Wu L; Palm A; Srichaiyo T; Hjertén S
    Electrophoresis; 1996 Sep; 17(9):1443-50. PubMed ID: 8905260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.