These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 7612832)

  • 41. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.
    Aguilar LF; Pino JA; Soto-Arriaza MA; Cuevas FJ; Sánchez S; Sotomayor CP
    PLoS One; 2012; 7(6):e40254. PubMed ID: 22768264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polarity-sensitive fluorescent probes in lipid bilayers: bridging spectroscopic behavior and microenvironment properties.
    Parisio G; Marini A; Biancardi A; Ferrarini A; Mennucci B
    J Phys Chem B; 2011 Aug; 115(33):9980-9. PubMed ID: 21770447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity.
    Gunther G; Malacrida L; Jameson DM; Gratton E; Sánchez SA
    Acc Chem Res; 2021 Feb; 54(4):976-987. PubMed ID: 33513300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs.
    Shaw AW; McLean MA; Sligar SG
    FEBS Lett; 2004 Jan; 556(1-3):260-4. PubMed ID: 14706860
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laurdan fluorescence spectroscopy in the thylakoid bilayer: the effect of violaxanthin to zeaxanthin conversion on the galactolipid dominated lipid environment.
    Szilágyi A; Selstam E; Akerlund HE
    Biochim Biophys Acta; 2008 Jan; 1778(1):348-55. PubMed ID: 17980143
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study.
    Wasif Baig M; Pederzoli M; Jurkiewicz P; Cwiklik L; Pittner J
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30011800
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lipid phases in renal brush border membranes revealed by Laurdan fluorescence.
    Levi M; Wilson PV; Cooper OJ; Gratton E
    Photochem Photobiol; 1993 Mar; 57(3):420-5. PubMed ID: 8475174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lipid bilayer pre-transition as the beginning of the melting process.
    Riske KA; Barroso RP; Vequi-Suplicy CC; Germano R; Henriques VB; Lamy MT
    Biochim Biophys Acta; 2009 May; 1788(5):954-63. PubMed ID: 19366598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids.
    Ekholm O; Jaikishan S; Lönnfors M; Nyholm TK; Slotte JP
    Biochim Biophys Acta; 2011 Mar; 1808(3):727-32. PubMed ID: 21167130
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study.
    Periasamy N; Winter R
    Biochim Biophys Acta; 2006 Mar; 1764(3):398-404. PubMed ID: 16330267
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane effects of lysozyme amyloid fibrils.
    Kastorna A; Trusova V; Gorbenko G; Kinnunen P
    Chem Phys Lipids; 2012 Apr; 165(3):331-7. PubMed ID: 22406142
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laurdan fluorescence: a simple method to evaluate sperm plasma membrane alterations.
    Ambrosini A; Zolese G; Balercia G; Bertoli E; Arnaldi G; Mantero F
    Fertil Steril; 2001 Sep; 76(3):501-5. PubMed ID: 11532472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane.
    Zhang YL; Frangos JA; Chachisvilis M
    Biochem Biophys Res Commun; 2006 Sep; 347(3):838-41. PubMed ID: 16857174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phospholipases a2 from Viperidae snakes: Differences in membranotropic activity between enzymatically active toxin and its inactive isoforms.
    Ghazaryan NA; Ghulikyan L; Kishmiryan A; Andreeva TV; Utkin YN; Tsetlin VI; Lomonte B; Ayvazyan NM
    Biochim Biophys Acta; 2015 Feb; 1848(2):463-8. PubMed ID: 25450350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GPS, the slope of Laurdan generalized polarization spectra, in the study of phospholipid lateral organization and Escherichia coli lipid phases.
    Velázquez JB; Fernández MS
    Arch Biochem Biophys; 2006 Nov; 455(2):163-74. PubMed ID: 17046709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase transition affects energy transfer efficiency in phospholipid vesicles.
    Kozyra KA; Heldt JR; Engelke M; Diehl HA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time-gated total internal reflection fluorescence spectroscopy (TG-TIRFS): application to the membrane marker laurdan.
    Schneckenburger H; Stock K; Strauss WS; Eickholz J; Sailer R
    J Microsc; 2003 Jul; 211(Pt 1):30-6. PubMed ID: 12839548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visualizing membrane microdomains by Laurdan 2-photon microscopy.
    Gaus K; Zech T; Harder T
    Mol Membr Biol; 2006; 23(1):41-8. PubMed ID: 16611579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Absence of fluid-ordered/fluid-disordered phase coexistence in ceramide/POPC mixtures containing cholesterol.
    Fidorra M; Duelund L; Leidy C; Simonsen AC; Bagatolli LA
    Biophys J; 2006 Jun; 90(12):4437-51. PubMed ID: 16565051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states.
    Barucha-Kraszewska J; Kraszewski S; Jurkiewicz P; Ramseyer C; Hof M
    Biochim Biophys Acta; 2010 Sep; 1798(9):1724-34. PubMed ID: 20510669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.