These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 7612835)
41. X-ray reflectivity study of a transcription-activating factor-derived peptide penetration into the model phospholipid monolayers. Tae G; Yang H; Shin K; Satija SK; Torikai N J Pept Sci; 2008 Apr; 14(4):461-8. PubMed ID: 17997505 [TBL] [Abstract][Full Text] [Related]
42. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. Kluge B; Vater J; Salnikow J; Eckart K FEBS Lett; 1988 Apr; 231(1):107-10. PubMed ID: 3129307 [TBL] [Abstract][Full Text] [Related]
43. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Niu SL; Litman BJ Biophys J; 2002 Dec; 83(6):3408-15. PubMed ID: 12496107 [TBL] [Abstract][Full Text] [Related]
44. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. Pinkas D; Fišer R; Kozlík P; Dolejšová T; Hryzáková K; Konopásek I; Mikušová G Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183405. PubMed ID: 32593615 [TBL] [Abstract][Full Text] [Related]
45. Imaging mixed lipid monolayers by dynamic atomic force microscopy. Deleu M; Nott K; Brasseur R; Jacques P; Thonart P; Dufrêne YF Biochim Biophys Acta; 2001 Jul; 1513(1):55-62. PubMed ID: 11427194 [TBL] [Abstract][Full Text] [Related]
46. Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Peypoux F; Bonmatin JM; Labbé H; Das BC; Ptak M; Michel G Eur J Biochem; 1991 Nov; 202(1):101-6. PubMed ID: 1935967 [TBL] [Abstract][Full Text] [Related]
47. [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Peypoux F; Bonmatin JM; Labbe H; Grangemard I; Das BC; Ptak M; Wallach J; Michel G Eur J Biochem; 1994 Aug; 224(1):89-96. PubMed ID: 8076655 [TBL] [Abstract][Full Text] [Related]
48. Toxicity and applications of surfactin for health and environmental biotechnology. Santos VSV; Silveira E; Pereira BB J Toxicol Environ Health B Crit Rev; 2018; 21(6-8):382-399. PubMed ID: 30614421 [TBL] [Abstract][Full Text] [Related]
49. Characteristics of the binding of tacrine to acidic phospholipids. Lehtonen JY; Rytömaa M; Kinnunen PK Biophys J; 1996 May; 70(5):2185-2194. PubMed ID: 9172742 [TBL] [Abstract][Full Text] [Related]
50. Differential interaction of equinatoxin II with model membranes in response to lipid composition. Caaveiro JM; Echabe I; Gutiérrez-Aguirre I; Nieva JL; Arrondo JL; González-Mañas JM Biophys J; 2001 Mar; 80(3):1343-53. PubMed ID: 11222295 [TBL] [Abstract][Full Text] [Related]
51. pH dependence of daunorubicin interactions with model DMPC:Cholesterol membranes. Matyszewska D; Brzezińska K; Juhaniewicz J; Bilewicz R Colloids Surf B Biointerfaces; 2015 Oct; 134():295-303. PubMed ID: 26209780 [TBL] [Abstract][Full Text] [Related]
52. Insertion of MAP4-VP1 peptide into lipid monolayers and bilayers. Mestres C; Haro I; Reig F; Alsina MA Biomed Chromatogr; 1997; 11(3):172-3. PubMed ID: 9192112 [TBL] [Abstract][Full Text] [Related]
53. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Jourdan E; Henry G; Duby F; Dommes J; Barthélemy JP; Thonart P; Ongena M Mol Plant Microbe Interact; 2009 Apr; 22(4):456-68. PubMed ID: 19271960 [TBL] [Abstract][Full Text] [Related]
54. Fluorescence study of the effect of cholesterol on spectrin-aminophospholipid interactions. Mitra M; Patra M; Chakrabarti A Eur Biophys J; 2015 Dec; 44(8):635-45. PubMed ID: 26184723 [TBL] [Abstract][Full Text] [Related]
55. Adsorption of the antimicrobial peptide arenicin and its linear derivative to model membranes--a maximum insertion pressure study. Travkova OG; Brezesinski G Chem Phys Lipids; 2013; 167-168():43-50. PubMed ID: 23395912 [TBL] [Abstract][Full Text] [Related]
56. Acetoin modulates conformational change of surfactin: Interfacial assembly and crude oil-washing performance. Hu F; Liu Y; Lin J; Wang W; Yu D; Li S Colloids Surf B Biointerfaces; 2021 Apr; 200():111602. PubMed ID: 33571865 [TBL] [Abstract][Full Text] [Related]
57. Gly(6) of kalata B1 is critical for the selective binding to phosphatidylethanolamine membranes. Hall K; Lee TH; Daly NL; Craik DJ; Aguilar MI Biochim Biophys Acta; 2012 Sep; 1818(9):2354-61. PubMed ID: 22538355 [TBL] [Abstract][Full Text] [Related]
58. The lipopeptide antibiotic A21978C has a specific interaction with DMPC only in the presence of calcium ions. Lakey JH; Maget-Dana R; Ptak M Biochim Biophys Acta; 1989 Oct; 985(1):60-6. PubMed ID: 2790047 [TBL] [Abstract][Full Text] [Related]
59. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study. Ouellet M; Doucet JD; Voyer N; Auger M Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978 [TBL] [Abstract][Full Text] [Related]
60. Effect of saturation in phospholipid/fatty acid monolayers on interaction with amyloid β peptide. Morita S; Mine D; Ishida Y J Biosci Bioeng; 2018 Apr; 125(4):457-463. PubMed ID: 29175122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]