These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7613090)

  • 21. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD.
    Emili A; Shales M; McCracken S; Xie W; Tucker PW; Kobayashi R; Blencowe BJ; Ingles CJ
    RNA; 2002 Sep; 8(9):1102-11. PubMed ID: 12358429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively.
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Nucleic Acids Res; 1993 Dec; 21(24):5609-15. PubMed ID: 8284205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoter specificity and modulation of RNA polymerase II transcription.
    Saltzman AG; Weinmann R
    FASEB J; 1989 Apr; 3(6):1723-33. PubMed ID: 2649403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insect iridescent virus type 6 encodes a polypeptide related to the largest subunit of eukaryotic RNA polymerase II.
    Schnitzler P; Sonntag KC; Müller M; Janssen W; Bugert JJ; Koonin EV; Darai G
    J Gen Virol; 1994 Jul; 75 ( Pt 7)():1557-67. PubMed ID: 8021587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unusual C-terminal domain of the largest subunit of RNA polymerase II of Crithidia fasciculata.
    Evers R; Hammer A; Cornelissen AW
    Nucleic Acids Res; 1989 May; 17(9):3403-13. PubMed ID: 2726483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An essential domain of an early-diverged RNA polymerase II functions to accurately decode a primitive chromatin landscape.
    Das A; Banday M; Fisher MA; Chang YJ; Rosenfeld J; Bellofatto V
    Nucleic Acids Res; 2017 Jul; 45(13):7886-7896. PubMed ID: 28575287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.
    Bienkiewicz EA; Moon Woody A; Woody RW
    J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.
    Liu P; Greenleaf AL; Stiller JW
    Mol Biol Evol; 2008 Apr; 25(4):719-27. PubMed ID: 18209193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage.
    Rosonina E; Blencowe BJ
    RNA; 2004 Apr; 10(4):581-9. PubMed ID: 15037767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD.
    Carlson M
    Annu Rev Cell Dev Biol; 1997; 13():1-23. PubMed ID: 9442866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase II.
    Guilfoyle TJ
    Plant Cell; 1989 Aug; 1(8):827-36. PubMed ID: 2535525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae.
    Kobor MS; Archambault J; Lester W; Holstege FC; Gileadi O; Jansma DB; Jennings EG; Kouyoumdjian F; Davidson AR; Young RA; Greenblatt J
    Mol Cell; 1999 Jul; 4(1):55-62. PubMed ID: 10445027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?
    Seipel K; Georgiev O; Gerber HP; Schaffner W
    Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular evolution of the RNA polymerase II CTD.
    Chapman RD; Heidemann M; Hintermair C; Eick D
    Trends Genet; 2008 Jun; 24(6):289-96. PubMed ID: 18472177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast.
    Babokhov M; Mosaheb MM; Baker RW; Fuchs SM
    G3 (Bethesda); 2018 May; 8(5):1593-1601. PubMed ID: 29523636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A.
    Anderson SF; Schlegel BP; Nakajima T; Wolpin ES; Parvin JD
    Nat Genet; 1998 Jul; 19(3):254-6. PubMed ID: 9662397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the genes encoding the largest subunit of RNA polymerase II in Arabidopsis and soybean.
    Dietrich MA; Prenger JP; Guilfoyle TJ
    Plant Mol Biol; 1990 Aug; 15(2):207-23. PubMed ID: 2103447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of the HIV-1 Tat and RAP74 proteins with the RNA polymerase II CTD phosphatase FCP1.
    Abbott KL; Archambault J; Xiao H; Nguyen BD; Roeder RG; Greenblatt J; Omichinski JG; Legault P
    Biochemistry; 2005 Mar; 44(8):2716-31. PubMed ID: 15723517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.