BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7613463)

  • 1. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations.
    Hodel A; Rice LM; Simonson T; Fox RO; Brünger AT
    Protein Sci; 1995 Apr; 4(4):636-54. PubMed ID: 7613463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease.
    Raleigh DP; Evans PA; Pitkeathly M; Dobson CM
    J Mol Biol; 1992 Nov; 228(2):338-42. PubMed ID: 1453444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR analysis of staphylococcal nuclease thermal quench refolding kinetics.
    Kautz RA; Fox RO
    Protein Sci; 1993 May; 2(5):851-8. PubMed ID: 8495202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress and strain in staphylococcal nuclease.
    Hodel A; Kautz RA; Jacobs MD; Fox RO
    Protein Sci; 1993 May; 2(5):838-50. PubMed ID: 8495201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted backbone conformational and motional flexibilities of loops containing peptidyl-proline bonds dominate the enzyme activity of staphylococcal nuclease.
    Shan L; Tong Y; Xie T; Wang M; Wang J
    Biochemistry; 2007 Oct; 46(41):11504-13. PubMed ID: 17887731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease.
    Patel S; Sasidhar YU
    J Pept Sci; 2007 Oct; 13(10):679-92. PubMed ID: 17787022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of a strained protein loop conformation through protein engineering.
    Hodel A; Kautz RA; Fox RO
    Protein Sci; 1995 Mar; 4(3):484-95. PubMed ID: 7795531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two conformational states of Turkey ovomucoid third domain at low pH: three-dimensional structures, internal dynamics, and interconversion kinetics and thermodynamics.
    Song J; Laskowski M; Qasim MA; Markley JL
    Biochemistry; 2003 Jun; 42(21):6380-91. PubMed ID: 12767219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins.
    Guan RJ; Xiang Y; He XL; Wang CG; Wang M; Zhang Y; Sundberg EJ; Wang DC
    J Mol Biol; 2004 Aug; 341(5):1189-204. PubMed ID: 15321715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein.
    Hinck AP; Truckses DM; Markley JL
    Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of anchorage in determining a strained protein loop conformation.
    Hodel A; Kautz RA; Adelman DM; Fox RO
    Protein Sci; 1994 Apr; 3(4):549-56. PubMed ID: 8003973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant.
    Kördel J; Forsén S; Drakenberg T; Chazin WJ
    Biochemistry; 1990 May; 29(18):4400-9. PubMed ID: 2350544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence lifetime studies with staphylococcal nuclease and its site-directed mutant. Test of the hypothesis that proline isomerism is the basis for nonexponential decays.
    Eftink MR; Ghiron CA; Kautz RA; Fox RO
    Biophys J; 1989 Mar; 55(3):575-9. PubMed ID: 2649165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rate enhancement for prolyl cis-to-trans isomerization of cyclic CPFC peptide is caused by an increase in the vibrational entropy of the transition state.
    Lee JY; Kang YK
    J Phys Chem B; 2008 Mar; 112(11):3287-9. PubMed ID: 18302366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between local structure and global stability of a protein: mutants of staphylococcal nuclease.
    Alexandrescu AT; Hinck AP; Markley JL
    Biochemistry; 1990 May; 29(19):4516-25. PubMed ID: 2372535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific NMR monitoring of cis-trans isomerization in the folding of the proline-rich collagen triple helix.
    Buevich AV; Dai QH; Liu X; Brodsky B; Baum J
    Biochemistry; 2000 Apr; 39(15):4299-308. PubMed ID: 10757978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.