BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 7613467)

  • 21. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases.
    Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S
    Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 24. Recombinant rhizopuspepsinogen. Expression, purification, and activation properties of recombinant rhizopuspepsinogens.
    Chen Z; Koelsch G; Han HP; Wang XJ; Lin XL; Hartsuck JA; Tang J
    J Biol Chem; 1991 Jun; 266(18):11718-25. PubMed ID: 2050673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redesign of catalytic center of an enzyme: aspartic to serine proteinase.
    Tanaka T; Yada RY
    Biochem Biophys Res Commun; 2004 Oct; 323(3):947-53. PubMed ID: 15381092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases.
    Dunn BM; Hung S
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):231-40. PubMed ID: 10708860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate and inhibitor profile of BACE (beta-secretase) and comparison with other mammalian aspartic proteases.
    Grüninger-Leitch F; Schlatter D; Küng E; Nelböck P; Döbeli H
    J Biol Chem; 2002 Feb; 277(7):4687-93. PubMed ID: 11741910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional chimera of porcine pepsin prosegment and Plasmodium falciparum plasmepsin II.
    Parr-Vasquez CL; Yada RY
    Protein Eng Des Sel; 2010 Jan; 23(1):19-26. PubMed ID: 19910416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of a residue at position 75 in the catalytic mechanism of a fungal aspartic proteinase, Rhizomucor pusillus pepsin. Replacement of tyrosine 75 on the flap by asparagine enhances catalytic efficiency.
    Park YN; Aikawa J; Nishiyama M; Horinouchi S; Beppu T
    Protein Eng; 1996 Oct; 9(10):869-75. PubMed ID: 8931126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica.
    Bailey D; Cooper JB
    Protein Sci; 1994 Nov; 3(11):2129-43. PubMed ID: 7703859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH dependence of kinetic parameters of pepsin, rhizopuspepsin, and their active-site hydrogen bond mutants.
    Lin Y; Fusek M; Lin X; Hartsuck JA; Kezdy FJ; Tang J
    J Biol Chem; 1992 Sep; 267(26):18413-8. PubMed ID: 1526982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of S'1 loop residues in the substrate specificities of pepsin A and chymosin.
    Kageyama T
    Biochemistry; 2004 Dec; 43(48):15122-30. PubMed ID: 15568804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein engineering loops in aspartic proteinases: site-directed mutagenesis, biochemical characterization and X-ray analysis of chymosin with a replaced loop from rhizopuspepsin.
    Nugent PG; Albert A; Orprayoon P; Wilsher J; Pitts JE; Blundell TL; Dhanaraj V
    Protein Eng; 1996 Oct; 9(10):885-93. PubMed ID: 8931128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures.
    Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymic and structural characterization of nepenthesin, a unique member of a novel subfamily of aspartic proteinases.
    Athauda SB; Matsumoto K; Rajapakshe S; Kuribayashi M; Kojima M; Kubomura-Yoshida N; Iwamatsu A; Shibata C; Inoue H; Takahashi K
    Biochem J; 2004 Jul; 381(Pt 1):295-306. PubMed ID: 15035659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active site specificity of plasmepsin II.
    Westling J; Cipullo P; Hung SH; Saft H; Dame JB; Dunn BM
    Protein Sci; 1999 Oct; 8(10):2001-9. PubMed ID: 10548045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary structure of aspergillopepsin I deduced from nucleotide sequence of the gene and aspartic acid-76 is an essential active site of the enzyme for trypsinogen activation.
    Shintani T; Ichishima E
    Biochim Biophys Acta; 1994 Feb; 1204(2):257-64. PubMed ID: 8142467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry.
    Rey M; Man P; Brandolin G; Forest E; Pelosi L
    Rapid Commun Mass Spectrom; 2009 Nov; 23(21):3431-8. PubMed ID: 19827048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate specificity and inhibitors of aspartic proteinases.
    Kay J; Dunn BM
    Scand J Clin Lab Invest Suppl; 1992; 210():23-30. PubMed ID: 1455176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.