These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7613629)

  • 1. Marginal cells in the spinal cord of four elasmobranchs (Torpedo marmorata, T. torpedo, Raja undulata and Scyliorhinus canicula): evidence for homology with lamprey intraspinal stretch receptor neurons.
    Anadón R; Molist P; Pombal MA; Rodríguez-Moldes I; Rodicio MC
    Eur J Neurosci; 1995 May; 7(5):934-43. PubMed ID: 7613629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of astroglial morphology in torpedo and scyliorhinus.
    Wasowicz M; Ward R; Repérant J
    J Neurocytol; 1999 Aug; 28(8):639-53. PubMed ID: 10851343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organisation of the cerebellar nucleus of the dogfish, Scyliorhinus canicula L.: a light microscopic, immunocytochemical, and ultrastructural study.
    Alvarez-Otero R; Perez SE; Rodriguez MA; Anadón R
    J Comp Neurol; 1996 May; 368(4):487-502. PubMed ID: 8744438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs).
    Sueiro C; Carrera I; Rodríguez-Moldes I; Molist P; Anadón R
    Brain Res Dev Brain Res; 2003 May; 142(2):141-50. PubMed ID: 12711365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The edge cell, a possible intraspinal mechanoreceptor.
    Grillner S; Williams T; Lagerbäck PA
    Science; 1984 Feb; 223(4635):500-3. PubMed ID: 6691161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata.
    Smeets WJ; Timerick SJ
    J Comp Neurol; 1981 Nov; 202(4):473-91. PubMed ID: 7298910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DiI-tracing study of the neural connections of the pineal organ in two elasmobranchs (Scyliorhinus canicula and Raja montagui) suggests a pineal projection to the midbrain GnRH-immunoreactive nucleus.
    Mandado M; Molist P; Anadón R; Yáñez J
    Cell Tissue Res; 2001 Mar; 303(3):391-401. PubMed ID: 11320655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marginal neurons in the urodele spinal cord and the associated denticulate ligaments.
    Schroeder DM; Egar MW
    J Comp Neurol; 1990 Nov; 301(1):93-103. PubMed ID: 1706360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical investigation of urotensins in the caudal spinal cord of four species of elasmobranchs and the lamprey, Lampetra japonica.
    Owada K; Yamada C; Kobayashi H
    Cell Tissue Res; 1985; 242(3):527-30. PubMed ID: 3907848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brainstem neurons projecting to different levels of the spinal cord of the dogfish Scyliorhinus canicula.
    Timerick SJ; Roberts BL; Paul DH
    Brain Behav Evol; 1992; 39(2):93-100. PubMed ID: 1555112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in descending brain-spinal cord projections with age in larval lamprey: implications for spinal cord injury.
    Zhang L; Palmer R; McClellan AD
    J Comp Neurol; 2002 May; 447(2):128-37. PubMed ID: 11977116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections of lamprey spinal neurons determined by the retrograde axonal transport of horseradish peroxidase.
    Tang D; Selzer ME
    J Comp Neurol; 1979 Dec; 188(4):629-45. PubMed ID: 391835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAergic neuronal circuits in the cerebellum of the dogfish Scyliorhinus canicula (Elasmobranchs): an immunocytochemical study.
    Alvarez-Otero R; Pérez SE; Rodríguez MA; Adrio F; Anadón R
    Neurosci Lett; 1995 Mar; 187(2):87-90. PubMed ID: 7783965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new population of neurons with crossed axons in the lamprey spinal cord.
    Ohta Y; Dubuc R; Grillner S
    Brain Res; 1991 Nov; 564(1):143-8. PubMed ID: 1723338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of catecholaminergic systems in the hypothalamus of two elasmobranch species, Raja undulata and Scyliorhinus canicula. A histofluorescence and immunohistochemical study.
    Molist P; Rodríguez-Moldes I; Anadón R
    Brain Behav Evol; 1993; 41(6):290-302. PubMed ID: 8100732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanosensitive neurons in the spinal cord of the lamprey.
    Grillner S; McClellan A; Sigvardt K
    Brain Res; 1982 Mar; 235(1):169-73. PubMed ID: 7188321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical study of spinobulbar neurons in lampreys.
    Vinay L; Bussières N; Shupliakov O; Dubuc R; Grillner S
    J Comp Neurol; 1998 Aug; 397(4):475-92. PubMed ID: 9699911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypophysial and extrahypophysial projections of the neurosecretory system of cartilaginous fishes: an immunocytochemical study using a polyclonal antibody against dogfish neurophysin.
    Meurling P; Rodríguez EM; Peña P; Grondona JM; Pérez J
    J Comp Neurol; 1996 Sep; 373(3):400-21. PubMed ID: 8889935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of thyrotropin-releasing hormone immunoreactivity in the brain of the dogfish Scyliorhinus canicula.
    Teijido O; Manso MJ; Anadón R
    J Comp Neurol; 2002 Dec; 454(1):65-81. PubMed ID: 12410619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.