These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7613633)

  • 21. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholinergic synaptic transmission between proprioceptive afferents and a hind leg motor neuron in the locust.
    Parker D; Newland PL
    J Neurophysiol; 1995 Feb; 73(2):586-94. PubMed ID: 7760120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.
    Hustert R; Baldus M
    J Exp Biol; 2010 Dec; 213(Pt 23):4055-64. PubMed ID: 21075947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excitatory interactions between antagonistic motor neurones underlying locust kicking and jumping during maturation after the adult moult.
    Norman AP
    J Comp Physiol A; 1997 Sep; 181(3):231-7. PubMed ID: 9309866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Axon growth from limb motorneurons in the locust embryo: the effect of target limb removal on the pattern of axon branching in the periphery.
    Whitington PM; Seifert E
    Dev Biol; 1984 Dec; 106(2):438-49. PubMed ID: 6500182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural comparison of a homologous neuron in gryllid and acridid insects.
    Wilson JA; Phillips CE; Adams ME; Huber F
    J Neurobiol; 1982 Sep; 13(5):459-67. PubMed ID: 7130982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of physiological and histochemical properties of motor units after cross-reinnervation of antagonistic muscles in the cat hindlimb.
    Gordon T; Thomas CK; Stein RB; Erdebil S
    J Neurophysiol; 1988 Jul; 60(1):365-78. PubMed ID: 2969959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.
    Ache JM; Matheson T
    J Neurophysiol; 2012 May; 107(10):2756-68. PubMed ID: 22357791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship among recruitment order, axonal conduction velocity, and muscle-unit properties of type-identified motor units in cat plantaris muscle.
    Zajac FE; Faden JS
    J Neurophysiol; 1985 May; 53(5):1303-22. PubMed ID: 2987433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jumping and kicking in the false stick insect Prosarthria teretrirostris: kinematics and motor control.
    Burrows M; Wolf H
    J Exp Biol; 2002 Jun; 205(Pt 11):1519-30. PubMed ID: 12000798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor control of aimed limb movements in an insect.
    Page KL; Zakotnik J; Dürr V; Matheson T
    J Neurophysiol; 2008 Feb; 99(2):484-99. PubMed ID: 18032564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triggering of locust jump by multimodal inhibitory interneurons.
    Pearson KG; Heitler WJ; Steeves JD
    J Neurophysiol; 1980 Feb; 43(2):257-78. PubMed ID: 6247459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spike width reduction modifies the dynamics of short-term depression at a central synapse in the locust.
    Niven JE; Burrows M
    J Neurosci; 2003 Aug; 23(20):7461-9. PubMed ID: 12930784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leg position learning by an insect: II. Motor strategies underlying learned leg extension.
    Forman RR; Zill SN
    J Neurobiol; 1984 May; 15(3):221-37. PubMed ID: 6736952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regional differences in responsiveness to octopamine within a locust skeletal muscle.
    Evans PD
    J Physiol; 1985 Sep; 366():331-41. PubMed ID: 2997440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A central pattern-generating network contributes to "reflex-reversal"-like leg motoneuron activity in the locust.
    Knop G; Denzer L; Büschges A
    J Neurophysiol; 2001 Dec; 86(6):3065-8. PubMed ID: 11731562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collateral sprouting of insect motorneurons.
    Donaldson PL; Josephson RK
    J Comp Neurol; 1981 Feb; 196(2):317-27. PubMed ID: 6260836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phasic modulation of short latency cutaneous excitation in flexor digitorum longus motoneurons during fictive locomotion.
    Schmidt BJ; Meyers DE; Fleshman JW; Tokuriki M; Burke RE
    Exp Brain Res; 1988; 71(3):568-78. PubMed ID: 3416970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The central connections and actions during walking of tibial campaniform sensilla in the locust.
    Newland PL; Emptage NJ
    J Comp Physiol A; 1996 Jun; 178(6):749-62. PubMed ID: 8667289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.