BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7614556)

  • 1. Molecular and biochemical characterization of the hexokinase from the starch-utilizing yeast Schwanniomyces occidentalis.
    Rose M
    Curr Genet; 1995 Mar; 27(4):330-8. PubMed ID: 7614556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and biochemical characterization of hexokinase from the methylotrophic yeast Hansenula polymorpha.
    Karp H; Järviste A; Kriegel TM; Alamäe T
    Curr Genet; 2003 Dec; 44(5):268-76. PubMed ID: 14530868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.
    Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and sequence analysis of the gene encoding invertase from the yeast Schwanniomyces occidentalis.
    Klein RD; Poorman RA; Favreau MA; Shea MH; Hatzenbuhler NT; Nulf SC
    Curr Genet; 1989 Sep; 16(3):145-52. PubMed ID: 2688929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII.
    Rose M; Albig W; Entian KD
    Eur J Biochem; 1991 Aug; 199(3):511-8. PubMed ID: 1868842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and characterization of the gene HXK1 encoding the hexokinase from Yarrowia lipolytica.
    Petit T; Gancedo C
    Yeast; 1999 Nov; 15(15):1573-84. PubMed ID: 10572255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state.
    De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J
    Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular biology of Schwanniomyces occidentalis klocker.
    Wang TT; Lee CF; Lee BH
    Crit Rev Biotechnol; 1999; 19(2):113-43. PubMed ID: 10406088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression.
    Entian KD; Fröhlich KU
    J Bacteriol; 1984 Apr; 158(1):29-35. PubMed ID: 6370959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases.
    Petit T; Blázquez MA; Gancedo C
    FEBS Lett; 1996 Jan; 378(2):185-9. PubMed ID: 8549830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae.
    Herrero P; Martínez-Campa C; Moreno F
    FEBS Lett; 1998 Aug; 434(1-2):71-6. PubMed ID: 9738454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling.
    Flipphi M; van de Vondervoort PJ; Ruijter GJ; Visser J; Arst HN; Felenbok B
    J Biol Chem; 2003 Apr; 278(14):11849-57. PubMed ID: 12519784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae.
    Ma H; Bloom LM; Walsh CT; Botstein D
    Mol Cell Biol; 1989 Dec; 9(12):5643-9. PubMed ID: 2685572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression.
    Walsh RB; Clifton D; Horak J; Fraenkel DG
    Genetics; 1991 Jul; 128(3):521-7. PubMed ID: 1874414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the cytochrome c gene from the starch-fermenting yeast Schwanniomyces occidentalis and its expression in Baker's yeast.
    Amegadzie BY; Zitomer RS; Hollenberg CP
    Yeast; 1990; 6(5):429-40. PubMed ID: 2171242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a reporter system for the yeast Schwanniomyces occidentalis: influence of DNA composition and codon usage.
    Janatova I; Costaglioli P; Wesche J; Masson JM; Meilhoc E
    Yeast; 2003 Jun; 20(8):687-701. PubMed ID: 12794930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Aspergillus nidulans xprF gene encodes a hexokinase-like protein involved in the regulation of extracellular proteases.
    Katz ME; Masoumi A; Burrows SR; Shirtliff CG; Cheetham BF
    Genetics; 2000 Dec; 156(4):1559-71. PubMed ID: 11102357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar repression in the methylotrophic yeast Hansenula polymorpha studied by using hexokinase-negative, glucokinase-negative and double kinase-negative mutants.
    Kramarenko T; Karp H; Järviste A; Alamäe T
    Folia Microbiol (Praha); 2000; 45(6):521-9. PubMed ID: 11501418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of invertase from a novel industrial yeast, Schwanniomyces occidentalis.
    Klein RD; Deibel MR; Sarcich JL; Zurcher-Neely HA; Reardon IM; Heinrikson RL
    Prep Biochem; 1989; 19(4):293-319. PubMed ID: 2622872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme.
    Albig W; Entian KD
    Gene; 1988 Dec; 73(1):141-52. PubMed ID: 3072253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.