These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 7615544)
1. Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.1-A structure of a threonine to isoleucine mutant at position 87 of CheY. Ganguli S; Wang H; Matsumura P; Volz K J Biol Chem; 1995 Jul; 270(29):17386-93. PubMed ID: 7615544 [TBL] [Abstract][Full Text] [Related]
2. Uncoupled phosphorylation and activation in bacterial chemotaxis. The 2.3 A structure of an aspartate to lysine mutant at position 13 of CheY. Jiang M; Bourret RB; Simon MI; Volz K J Biol Chem; 1997 May; 272(18):11850-5. PubMed ID: 9115243 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of CheY mutants Y106W and T87I/Y106W. CheY activation correlates with movement of residue 106. Zhu X; Rebello J; Matsumura P; Volz K J Biol Chem; 1997 Feb; 272(8):5000-6. PubMed ID: 9030562 [TBL] [Abstract][Full Text] [Related]
4. Chemotactic response regulator mutant CheY95IV exhibits enhanced binding to the flagellar switch and phosphorylation-dependent constitutive signalling. Schuster M; Abouhamad WN; Silversmith RE; Bourret RB Mol Microbiol; 1998 Mar; 27(5):1065-75. PubMed ID: 9535095 [TBL] [Abstract][Full Text] [Related]
5. Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. Dyer CM; Dahlquist FW J Bacteriol; 2006 Nov; 188(21):7354-63. PubMed ID: 17050923 [TBL] [Abstract][Full Text] [Related]
6. Correlated switch binding and signaling in bacterial chemotaxis. Schuster M; Zhao R; Bourret RB; Collins EJ J Biol Chem; 2000 Jun; 275(26):19752-8. PubMed ID: 10748173 [TBL] [Abstract][Full Text] [Related]
7. Structure of the constitutively active double mutant CheYD13K Y106W alone and in complex with a FliM peptide. Dyer CM; Quillin ML; Campos A; Lu J; McEvoy MM; Hausrath AC; Westbrook EM; Matsumura P; Matthews BW; Dahlquist FW J Mol Biol; 2004 Sep; 342(4):1325-35. PubMed ID: 15351654 [TBL] [Abstract][Full Text] [Related]
8. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations. Roman SJ; Meyers M; Volz K; Matsumura P J Bacteriol; 1992 Oct; 174(19):6247-55. PubMed ID: 1400175 [TBL] [Abstract][Full Text] [Related]
9. Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli. Zhu X; Amsler CD; Volz K; Matsumura P J Bacteriol; 1996 Jul; 178(14):4208-15. PubMed ID: 8763950 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of Escherichia coli CheY refined at 1.7-A resolution. Volz K; Matsumura P J Biol Chem; 1991 Aug; 266(23):15511-9. PubMed ID: 1869568 [TBL] [Abstract][Full Text] [Related]
11. Proposed signal transduction role for conserved CheY residue Thr87, a member of the response regulator active-site quintet. Appleby JL; Bourret RB J Bacteriol; 1998 Jul; 180(14):3563-9. PubMed ID: 9657998 [TBL] [Abstract][Full Text] [Related]
12. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Bourret RB; Hess JF; Simon MI Proc Natl Acad Sci U S A; 1990 Jan; 87(1):41-5. PubMed ID: 2404281 [TBL] [Abstract][Full Text] [Related]
13. Roles of the highly conserved aspartate and lysine residues in the response regulator of bacterial chemotaxis. Lukat GS; Lee BH; Mottonen JM; Stock AM; Stock JB J Biol Chem; 1991 May; 266(13):8348-54. PubMed ID: 1902474 [TBL] [Abstract][Full Text] [Related]
14. The 1.9 A resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Halkides CJ; McEvoy MM; Casper E; Matsumura P; Volz K; Dahlquist FW Biochemistry; 2000 May; 39(18):5280-6. PubMed ID: 10819997 [TBL] [Abstract][Full Text] [Related]
15. Conformational coupling in the chemotaxis response regulator CheY. Schuster M; Silversmith RE; Bourret RB Proc Natl Acad Sci U S A; 2001 May; 98(11):6003-8. PubMed ID: 11353835 [TBL] [Abstract][Full Text] [Related]
16. Matching biochemical reaction kinetics to the timescales of life: structural determinants that influence the autodephosphorylation rate of response regulator proteins. Pazy Y; Wollish AC; Thomas SA; Miller PJ; Collins EJ; Bourret RB; Silversmith RE J Mol Biol; 2009 Oct; 392(5):1205-20. PubMed ID: 19646451 [TBL] [Abstract][Full Text] [Related]
17. Localized perturbations in CheY structure monitored by NMR identify a CheA binding interface. Swanson RV; Lowry DF; Matsumura P; McEvoy MM; Simon MI; Dahlquist FW Nat Struct Biol; 1995 Oct; 2(10):906-10. PubMed ID: 7552716 [TBL] [Abstract][Full Text] [Related]
18. Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. Welch M; Oosawa K; Aizawa SI; Eisenbach M Biochemistry; 1994 Aug; 33(34):10470-6. PubMed ID: 8068685 [TBL] [Abstract][Full Text] [Related]
19. Activation of the phosphosignaling protein CheY. II. Analysis of activated mutants by 19F NMR and protein engineering. Bourret RB; Drake SK; Chervitz SA; Simon MI; Falke JJ J Biol Chem; 1993 Jun; 268(18):13089-96. PubMed ID: 8514750 [TBL] [Abstract][Full Text] [Related]