These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 7615581)

  • 1. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation.
    Davies JP; O'Connor DO; Burke DW; Harris WH
    J Biomed Mater Res; 1989 Apr; 23(4):379-97. PubMed ID: 2708414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fractographic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life.
    James SP; Jasty M; Davies J; Piehler H; Harris WH
    J Biomed Mater Res; 1992 May; 26(5):651-62. PubMed ID: 1512284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fracture toughness of titanium-fiber-reinforced bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1992 Dec; 26(12):1599-617. PubMed ID: 1484065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of centrifugation on the fatigue life of bone cement in the presence of surface irregularities.
    Davies JP; O'Connor DO; Burke DW; Jasty M; Harris WH
    Clin Orthop Relat Res; 1988 Apr; (229):156-61. PubMed ID: 3349670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1990 Feb; 24(2):135-54. PubMed ID: 2329111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of in vitro fatigue properties of PMMA bone cement on the polydispersity index of its powder.
    Lewis G; Li Y
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):94-101. PubMed ID: 19878906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    Biomaterials; 1998 Sep; 19(17):1569-77. PubMed ID: 9830982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of poly(methyl methacrylate) bone cements.
    Robinson RP; Wright TM; Burstein AH
    J Biomed Mater Res; 1981 Mar; 15(2):203-8. PubMed ID: 7348714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hand mixing tobramycin on the fatigue strength of Simplex P.
    Davies JP; Harris WH
    J Biomed Mater Res; 1991 Nov; 25(11):1409-14. PubMed ID: 1797811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical strength of poly(methyl methacrylate) cement-human bone interfaces.
    Kusleika R; Stupp SI
    J Biomed Mater Res; 1983 May; 17(3):441-58. PubMed ID: 6863348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bending properties of wire-reinforced bone cement for applications in spinal fixation.
    Saha S; Kraay MJ
    J Biomed Mater Res; 1979 May; 13(3):443-57. PubMed ID: 438229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular-weight polyethylene fibers.
    Pourdeyhimi B; Wagner HD
    J Biomed Mater Res; 1989 Jan; 23(1):63-80. PubMed ID: 2708405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the fatigue characteristics of centrifuged and uncentrifuged Simplex P bone cement.
    Davies JP; Burke DW; O'Connor DO; Harris WH
    J Orthop Res; 1987; 5(3):366-71. PubMed ID: 3625359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovations in acrylic bone cement and application equipment.
    Kindt-Larsen T; Smith DB; Jensen JS
    J Appl Biomater; 1995; 6(1):75-83. PubMed ID: 7703541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study.
    Frigstad JR; Park JB
    Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon fiber-reinforced bone cement in orthopedic surgery.
    Pilliar RM; Blackwell R; Macnab I; Cameron HU
    J Biomed Mater Res; 1976 Nov; 10(6):893-906. PubMed ID: 993226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.