These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7615673)

  • 1. Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls.
    Ryu JH; Takagi S; Nagai R
    J Cell Sci; 1995 Apr; 108 ( Pt 4)():1531-9. PubMed ID: 7615673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular components implicated in the stationary organization of the actin cytoskeleton in mesophyll cells of Vallisneria.
    Ryu JH; Mizuno K; Takagi S; Nagai R
    Plant Cell Physiol; 1997 Apr; 38(4):420-32. PubMed ID: 9177028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara.
    Nothnagel EA; Barak LS; Sanger JW; Webb WW
    J Cell Biol; 1981 Feb; 88(2):364-72. PubMed ID: 6894146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motile apparatus in Vallisneria leaf cells. I. Organization of microfilaments.
    Yamaguchi Y; Nagai R
    J Cell Sci; 1981 Apr; 48():193-205. PubMed ID: 6792210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochalasin B stabilises the sub-cortical actin bundles of Chara against a solution of low ionic strength.
    Williamson RE
    Cytobiologie; 1978 Oct; 18(1):107-13. PubMed ID: 568572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfilaments: dynamic arrays in higher plant cells.
    Seagull RW; Falconer MM; Weerdenburg CA
    J Cell Biol; 1987 Apr; 104(4):995-1004. PubMed ID: 3558488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize.
    Blancaflor EB; Hasenstein KH
    Plant Physiol; 1997 Apr; 113(4):1447-55. PubMed ID: 11536803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of cytoplasmic streaming in Vallisneria mesophyll cells.
    Takagi S; Nagai R
    J Cell Sci; 1983 Jul; 62():385-405. PubMed ID: 6413519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochalasin B slows but does not prevent monomer addition at the barbed end of the actin filament.
    Bonder EM; Mooseker MS
    J Cell Biol; 1986 Jan; 102(1):282-8. PubMed ID: 3941155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism.
    Braun M; Wasteneys GO
    Planta; 1998 May; 205(1):39-50. PubMed ID: 9599803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin microfilaments and fibroin secretion in the silkgland cells of Bombyx mori. Effects of cytochalasin B.
    Couble P; Blaes N; Prudhomme JC
    Exp Cell Res; 1984 Apr; 151(2):322-31. PubMed ID: 6538508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of actin-dependent cytoplasmic motility by type II phytochrome occurs within seconds in Vallisneria gigantea epidermal cells.
    Takagi S; Kong SG; Mineyuki Y; Furuya M
    Plant Cell; 2003 Feb; 15(2):331-45. PubMed ID: 12566576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light.
    Sakai Y; Takagi S
    Planta; 2005 Aug; 221(6):823-30. PubMed ID: 15809866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorganization of microfilaments in protonemal tip cells of the moss Ceratodon purpureus during the phototropic response.
    Meske V; Hartmann E
    Protoplasma; 1995; 188(1-2):59-69. PubMed ID: 11541040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus.
    Traas JA; Doonan JH; Rawlins DJ; Shaw PJ; Watts J; Lloyd CW
    J Cell Biol; 1987 Jul; 105(1):387-95. PubMed ID: 2440896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans.
    Strome S
    J Cell Biol; 1986 Dec; 103(6 Pt 1):2241-52. PubMed ID: 3782297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells.
    Liebe S; Menzel D
    Biol Cell; 1995; 85(2-3):207-22. PubMed ID: 8785522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anti-proliferative agent jasplakinolide rearranges the actin cytoskeleton of plant cells.
    Sawitzky H; Liebe S; Willingale-Theune J; Menzel D
    Eur J Cell Biol; 1999 Jun; 78(6):424-33. PubMed ID: 10430024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of microfilaments in cytoplasmic streaming in Drosophila follicles.
    Gutzeit HO
    J Cell Sci; 1986 Feb; 80():159-69. PubMed ID: 3722280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.