These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Non-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells. Yvon AM; Wadsworth P J Cell Sci; 1997 Oct; 110 ( Pt 19)():2391-401. PubMed ID: 9410878 [TBL] [Abstract][Full Text] [Related]
28. Generation of microtubule stability subclasses by microtubule-associated proteins: implications for the microtubule "dynamic instability" model. Job D; Pabion M; Margolis RL J Cell Biol; 1985 Nov; 101(5 Pt 1):1680-9. PubMed ID: 4055892 [TBL] [Abstract][Full Text] [Related]
29. Sertoli cell processes have axoplasmic features: an ordered microtubule distribution and an abundant high molecular weight microtubule-associated protein (cytoplasmic dynein). Neely MD; Boekelheide K J Cell Biol; 1988 Nov; 107(5):1767-76. PubMed ID: 2972729 [TBL] [Abstract][Full Text] [Related]
30. End-to-end annealing of plant microtubules by the p86 subunit of eukaryotic initiation factor-(iso)4F. Hugdahl JD; Bokros CL; Morejohn LC Plant Cell; 1995 Dec; 7(12):2129-38. PubMed ID: 8718623 [TBL] [Abstract][Full Text] [Related]
31. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. Selden SC; Pollard TD J Biol Chem; 1983 Jun; 258(11):7064-71. PubMed ID: 6304075 [TBL] [Abstract][Full Text] [Related]
32. Identification of high molecular weight microtubule-associated proteins in anterior pituitary tissue and cells using taxol-dependent purification combined with microtubule-associated protein specific antibodies. Bloom GS; Luca FC; Vallee RB Biochemistry; 1985 Jul; 24(15):4185-91. PubMed ID: 2864954 [TBL] [Abstract][Full Text] [Related]
33. Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro. Zanic M Methods Mol Biol; 2016; 1413():47-61. PubMed ID: 27193842 [TBL] [Abstract][Full Text] [Related]
34. Phase dynamics at microtubule ends: the coexistence of microtubule length changes and treadmilling. Farrell KW; Jordan MA; Miller HP; Wilson L J Cell Biol; 1987 Apr; 104(4):1035-46. PubMed ID: 3558477 [TBL] [Abstract][Full Text] [Related]
35. The binding of MAP-2 and tau on brain microtubules in vitro: implications for microtubule structure. Kim H; Jensen CG; Rebhun LI Ann N Y Acad Sci; 1986; 466():218-39. PubMed ID: 3089106 [TBL] [Abstract][Full Text] [Related]
36. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Trinczek B; Biernat J; Baumann K; Mandelkow EM; Mandelkow E Mol Biol Cell; 1995 Dec; 6(12):1887-902. PubMed ID: 8590813 [TBL] [Abstract][Full Text] [Related]
37. A 60-kDa plant microtubule-associated protein promotes the growth and stabilization of neurotubules in vitro. Rutten T; Chan J; Lloyd CW Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4469-74. PubMed ID: 9114013 [TBL] [Abstract][Full Text] [Related]
38. Microtubule dynamics and the regulation by microtubule-associated proteins (MAPs). Itoh TJ; Hotani H Biol Sci Space; 2004 Nov; 18(3):116-7. PubMed ID: 15858348 [TBL] [Abstract][Full Text] [Related]
39. Dynamic instability of native microtubules from squid axons is rare and independent of gliding and vesicle transport. Seitz-Tutter D; Langford GM; Weiss DG Exp Cell Res; 1988 Oct; 178(2):504-12. PubMed ID: 2458953 [TBL] [Abstract][Full Text] [Related]
40. Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2). Ichihara K; Kitazawa H; Iguchi Y; Hotani H; Itoh TJ J Mol Biol; 2001 Sep; 312(1):107-18. PubMed ID: 11545589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]