BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 7615810)

  • 1. Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols.
    Freedman JE; Frei B; Welch GN; Loscalzo J
    J Clin Invest; 1995 Jul; 96(1):394-400. PubMed ID: 7615810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of human platelet aggregation by a novel S-nitrosothiol is abolished by haemoglobin and red blood cells in vitro: implications for anti-thrombotic therapy.
    Megson IL; Sogo N; Mazzei FA; Butler AR; Walton JC; Webb DJ
    Br J Pharmacol; 2000 Dec; 131(7):1391-8. PubMed ID: 11090112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergism of hydrogen peroxide with plasma S-nitrosothiols in the inhibition of platelet activation.
    Naseem KM; Chirico S; Mohammadi B; Bruckdorfer KR
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):759-66. PubMed ID: 8836116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antiplatelet properties of protein S-nitrosothiols derived from nitric oxide and endothelium-derived relaxing factor.
    Simon DI; Stamler JS; Jaraki O; Keaney JF; Osborne JA; Francis SA; Singel DJ; Loscalzo J
    Arterioscler Thromb; 1993 Jun; 13(6):791-9. PubMed ID: 8388713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of platelet aggregation by S-nitroso-cysteine via cGMP-independent mechanisms: evidence of inhibition of thromboxane A2 synthesis in human blood platelets.
    Tsikas D; Ikic M; Tewes KS; Raida M; Frölich JC
    FEBS Lett; 1999 Jan; 442(2-3):162-6. PubMed ID: 9928994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper chelation-induced reduction of the biological activity of S-nitrosothiols.
    Gordge MP; Meyer DJ; Hothersall J; Neild GH; Payne NN; Noronha-Dutra A
    Br J Pharmacol; 1995 Mar; 114(5):1083-9. PubMed ID: 7780643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a cyclic GMP-independent mechanism in the anti-platelet action of S-nitrosoglutathione.
    Gordge MP; Hothersall JS; Noronha-Dutra AA
    Br J Pharmacol; 1998 May; 124(1):141-8. PubMed ID: 9630353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of superoxide dismutase on the stability of S-nitrosothiols.
    Jourd'heuil D; Laroux FS; Miles AM; Wink DA; Grisham MB
    Arch Biochem Biophys; 1999 Jan; 361(2):323-30. PubMed ID: 9882463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel synthesis of S-nitrosoglutathione and degradation by human neutrophils.
    Clancy RM; Abramson SB
    Anal Biochem; 1992 Aug; 204(2):365-71. PubMed ID: 1443537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-reactivity studies of the Cu(2+)-catalyzed decomposition of four S-nitrosothiols based around the S-Nitrosocysteine/S-nitrosoglutathione structures.
    Noble DR; Williams DL
    Nitric Oxide; 2000 Aug; 4(4):392-8. PubMed ID: 10944424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathione reductase.
    Butzer U; Weidenbach H; Gansauge S; Gansauge F; Beger HG; Nussler AK
    FEBS Lett; 1999 Feb; 445(2-3):274-8. PubMed ID: 10094471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological chemistry and clinical potential of S-nitrosothiols.
    Hogg N
    Free Radic Biol Med; 2000 May; 28(10):1478-86. PubMed ID: 10927172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cGMP-independent mechanisms.
    Sogo N; Magid KS; Shaw CA; Webb DJ; Megson IL
    Biochem Biophys Res Commun; 2000 Dec; 279(2):412-9. PubMed ID: 11118301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of a copper (I)-dependent enzyme in the anti-platelet action of S-nitrosoglutathione.
    Gordge MP; Hothersall JS; Neild GH; Dutra AA
    Br J Pharmacol; 1996 Oct; 119(3):533-8. PubMed ID: 8894174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-Transnitrosation reactions are involved in the metabolic fate and biological actions of nitric oxide.
    Liu Z; Rudd MA; Freedman JE; Loscalzo J
    J Pharmacol Exp Ther; 1998 Feb; 284(2):526-34. PubMed ID: 9454793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of human platelet aggregation by S-nitrosothiols. Heme-dependent activation of soluble guanylate cyclase and stimulation of cyclic GMP accumulation.
    Mellion BT; Ignarro LJ; Myers CB; Ohlstein EH; Ballot BA; Hyman AL; Kadowitz PJ
    Mol Pharmacol; 1983 May; 23(3):653-64. PubMed ID: 6135148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols.
    Kowaluk EA; Fung HL
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1256-64. PubMed ID: 2175799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra-platelet low-molecular-mass thiols mediate the inhibitory action of S-nitrosoalbumin on human platelet aggregation via S-transnitrosylation of the platelet surface.
    Tsikas D
    Amino Acids; 2021 Apr; 53(4):563-573. PubMed ID: 33586042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of glutathione in nitric oxide-dependent regulation of energy metabolism in rat hepatoma cells.
    Nishikawa M; Sato EF; Kashiba M; Kuroki T; Utsumi K; Inoue M
    Hepatology; 1998 Feb; 27(2):422-6. PubMed ID: 9462640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of nitric oxide release from S-nitrosothiols.
    Singh RJ; Hogg N; Joseph J; Kalyanaraman B
    J Biol Chem; 1996 Aug; 271(31):18596-603. PubMed ID: 8702510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.