BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7616189)

  • 1. An immunological factor that affects Anopheles gambiae survival.
    Noden BH; Vaughan JA; Ibrahim MS; Beier JC
    J Am Mosq Control Assoc; 1995 Mar; 11(1):45-9. PubMed ID: 7616189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae).
    Suneja A; Gulia M; Gakhar SK
    Arch Insect Biochem Physiol; 2003 Feb; 52(2):63-70. PubMed ID: 12529861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Midgut antibodies reduce the reproductive capacity of Anopheles stephensi (Diptera: Culicidae).
    Gakhar SK; Suneja A; Adak T
    Indian J Exp Biol; 2005 Apr; 43(4):330-4. PubMed ID: 15875716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.
    Arredondo-Jiménez JI; Valdez-Delgado KM
    Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of mosquitocidal activity in mice immunized with Anopheles gambiae midgut cDNA.
    Foy BD; Magalhaes T; Injera WE; Sutherland I; Devenport M; Thanawastien A; Ripley D; Cárdenas-Freytag L; Beier JC
    Infect Immun; 2003 Apr; 71(4):2032-40. PubMed ID: 12654823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibodies to Anopheles midgut reduce vector competence for Plasmodium vivax malaria.
    Srikrishnaraj KA; Ramasamy R; Ramasamy MS
    Med Vet Entomol; 1995 Oct; 9(4):353-7. PubMed ID: 8541583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitric oxide on Dengue virus replication in Aedes aegypti and Anopheles albimanus.
    Ramos-Castañeda J; González C; Jiménez MA; Duran J; Hernández-Martínez S; Rodríguez MH; Lanz-Mendoza H
    Intervirology; 2008; 51(5):335-41. PubMed ID: 19023217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of anti-midgut-protein-ingredient antibodies of Anopheles stephensi on the oocysts of Plasmodium yoelii].
    Wei QF; Zeng LE; Sun BQ; Shao CL; Wang FY; Zhu XP
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2006 Dec; 24(6):441-4. PubMed ID: 17366975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-mosquito ovary antibodies reduce the fecundity of Anopheles stephensi (Diptera:Insecta).
    Gakhar SK; Jhamb A; Gulia M; Dixit R
    Jpn J Infect Dis; 2001 Oct; 54(5):181-3. PubMed ID: 11754155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative toxicity of selected larvicidal formulations against Anopheles stephensi Liston and Aedes aegypti Linn.
    Mittal PK; Adak T; Batra CP
    J Commun Dis; 2001 Jun; 33(2):116-20. PubMed ID: 12170930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anti-mosquito hemolymph antibodies on fecundity and on the infectivity of malarial parasite Plasmodium vivax to Anopheles stephensi (Diptera:Insecta).
    Gulia M; Suneja A; Gakhar SK
    Jpn J Infect Dis; 2002 Jun; 55(3):78-82. PubMed ID: 12195047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus.
    Xue RD; Barnard DR; Ali A
    J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment of a single clone from a high diversity library of phage-displayed antibodies by panning with Anopheles gambiae (Diptera: Culicidae) midgut homogenate.
    Killeen GF; Foy BD; Frohn RH; Impoinvil D; Williams A; Beier JC
    Bull Entomol Res; 2003 Feb; 93(1):31-7. PubMed ID: 12593680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of anti-mosquito-midgut antibodies on the development of oocysts of Plasmodium yoelii in Anopheles stephensi].
    Wei QF; Gao XZ
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2000; 18(4):197-9. PubMed ID: 12567656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of blood feeding and exogenous supply of tryptophan on the quantities of xanthurenic acid in the salivary glands of Anopheles stephensi (Diptera: Culicidae).
    Okech B; Arai M; Matsuoka H
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1113-8. PubMed ID: 16469295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.
    Coy MR; Tu Z
    Insect Mol Biol; 2007 Aug; 16(4):411-21. PubMed ID: 17506852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium.
    Gakhar SK; Shandilya HK
    Indian J Exp Biol; 2001 Mar; 39(3):287-90. PubMed ID: 11495292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biolarvicides in vector control: challenges and prospects.
    Mittal PK
    J Vector Borne Dis; 2003; 40(1-2):20-32. PubMed ID: 15119068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative performances, under laboratory conditions, of seven pyrethroid insecticides used for impregnation of mosquito nets.
    Hougard JM; Duchon S; Darriet F; Zaim M; Rogier C; Guillet P
    Bull World Health Organ; 2003; 81(5):324-33. PubMed ID: 12856050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.