These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 761648)

  • 1. External solution driving forces for isotonic fluid absorption in proximal tubules.
    Andreoli TE; Schafer JA
    Fed Proc; 1979 Feb; 38(2):154-60. PubMed ID: 761648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption.
    Andreoli TE; Schafer JA
    Am J Physiol; 1979 Feb; 236(2):F89-96. PubMed ID: 369393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell shape as an indicator of volume reabsorption in proximal nephron.
    Welling DJ; Welling LW
    Fed Proc; 1979 Feb; 38(2):121-7. PubMed ID: 761645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glomerular tubular balance: mediation by luminal hypotonicity.
    Häberle DA; Müller U; Nagel W
    Miner Electrolyte Metab; 1989; 15(3):108-13. PubMed ID: 2725432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport.
    Larsen EH; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2006; 187(1-2):177-89. PubMed ID: 16734754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of intercellular hypertonicity and isotonic fluid absorption in proximal tubules of mammalian kidneys.
    Kiil F
    Acta Physiol Scand; 2002 May; 175(1):71-83. PubMed ID: 11982506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anion transport processes in the mammalian superficial proximal straight tubule.
    Schafer JA; Andreoli TE
    J Clin Invest; 1976 Aug; 58(2):500-13. PubMed ID: 956381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule.
    Brenner BM; Falchuk KH; Keimowitz RI; Berliner RW
    J Clin Invest; 1969 Aug; 48(8):1519-31. PubMed ID: 5796362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Ringer solution induced extracellular volume expansion on kidney function.
    Kövér G; Tost H; Darvasi A
    Acta Physiol Hung; 1989; 74(2):141-60. PubMed ID: 2603731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Renal water-electrolyte excretion and its control mechanisms. Current status of knowledge].
    Agnoli GC; Garutti C
    Minerva Med; 1976 Nov; 67(56):3673-702. PubMed ID: 995312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules.
    Kawamura S; Imai M; Seldin DW; Kukko JP
    J Clin Invest; 1975 Jun; 55(6):1269-77. PubMed ID: 1133172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption.
    Andreoli TE; Schafer JA
    Am J Physiol; 1978 Apr; 234(4):F349-55. PubMed ID: 645870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A component of fluid absorption linked to passive ion flows in the superficial pars recta.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1975 Oct; 66(4):445-71. PubMed ID: 1181377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Transport of chlorine in the proximal tubule. Its effects on water-electrolyte absorption].
    Anagnostopoulos T; Edelman A; Planelles G; Teulon J; Thomas SR
    J Physiol (Paris); 1984; 79(3):132-8. PubMed ID: 6381694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active and passive components of NaCl absorption in the proximal convoluted tubule of the rat kidney.
    Chantrelle BM; Cogan MG; Rector FC
    Miner Electrolyte Metab; 1985; 11(4):209-14. PubMed ID: 4033600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of influence of volume flux on phosphate reabsorption in the proximal tubule.
    Kaufman JS; Hamburger RJ
    Miner Electrolyte Metab; 1987; 13(3):158-64. PubMed ID: 3627047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the paracellular pathway in isotonic fluid movement across the renal tubule.
    Boulpaep EL; Sackin H
    Yale J Biol Med; 1977; 50(2):115-31. PubMed ID: 331692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axial heterogeneity in the rat proximal convoluted tubule. II. Osmolality and osmotic water permeability.
    Liu FY; Cogan MG; Rector FC
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F822-6. PubMed ID: 6496748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Proximal isosmotic reabsorption by the kidney. Mechanism and regulation].
    Morel F
    J Physiol (Paris); 1976; 72(4):515-30. PubMed ID: 134149
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.