These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 7616573)
1. A comparison of neutron diffraction and molecular dynamics structures: hydroxyl group and water molecule orientations in trypsin. McDowell RS; Kossiakoff AA J Mol Biol; 1995 Jul; 250(4):553-70. PubMed ID: 7616573 [TBL] [Abstract][Full Text] [Related]
2. Hydroxyl and water molecule orientations in trypsin: comparison to molecular dynamic structures. McDowell RS; Kossiakoff AA Basic Life Sci; 1996; 64():273-87. PubMed ID: 9092457 [TBL] [Abstract][Full Text] [Related]
3. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction. Finer-Moore JS; Kossiakoff AA; Hurley JH; Earnest T; Stroud RM Proteins; 1992 Mar; 12(3):203-22. PubMed ID: 1557349 [TBL] [Abstract][Full Text] [Related]
4. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin. Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350 [TBL] [Abstract][Full Text] [Related]
5. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Brünger AT; Karplus M Proteins; 1988; 4(2):148-56. PubMed ID: 3227015 [TBL] [Abstract][Full Text] [Related]
6. The hydration structure of a Z-DNA hexameric duplex determined by a neutron diffraction technique. Chatake T; Tanaka I; Umino H; Arai S; Niimura N Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1088-98. PubMed ID: 16041074 [TBL] [Abstract][Full Text] [Related]
7. Neutron Laue diffraction studies of coenzyme cob(II)alamin. Langan P; Lehmann M; Wilkinson C; Jogl G; Kratky C Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):51-9. PubMed ID: 10089394 [TBL] [Abstract][Full Text] [Related]
8. Hydration in proteins observed by high-resolution neutron crystallography. Chatake T; Ostermann A; Kurihara K; Parak FG; Niimura N Proteins; 2003 Feb; 50(3):516-23. PubMed ID: 12557193 [TBL] [Abstract][Full Text] [Related]
9. Understanding water: molecular dynamics simulations of myoglobin. Gu W; Garcia AE; Schoenborn BP Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458 [TBL] [Abstract][Full Text] [Related]
10. Structure of aqueous glucose solutions as determined by neutron diffraction with isotopic substitution experiments and molecular dynamics calculations. Mason PE; Neilson GW; Enderby JE; Saboungi ML; Brady JW J Phys Chem B; 2005 Jul; 109(27):13104-11. PubMed ID: 16852630 [TBL] [Abstract][Full Text] [Related]
12. An assessment of the accuracy of methods for predicting hydrogen positions in protein structures. Forrest LR; Honig B Proteins; 2005 Nov; 61(2):296-309. PubMed ID: 16114036 [TBL] [Abstract][Full Text] [Related]
13. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA; Jagielska A; Scheraga HA J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746 [TBL] [Abstract][Full Text] [Related]
14. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment. Lounnas V; Pettitt BM Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663 [TBL] [Abstract][Full Text] [Related]
15. Hydration of proteins. A comparison of experimental residence times of water molecules solvating the bovine pancreatic trypsin inhibitor with theoretical model calculations. Brunne RM; Liepinsh E; Otting G; Wüthrich K; van Gunsteren WF J Mol Biol; 1993 Jun; 231(4):1040-8. PubMed ID: 7685828 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation of hydration in myoglobin. Gu W; Schoenborn BP Proteins; 1995 May; 22(1):20-6. PubMed ID: 7675783 [TBL] [Abstract][Full Text] [Related]
18. Electrostatic polarization effects and hydrophobic hydration in ethanol-water solutions from molecular dynamics simulations. Zhong Y; Patel S J Phys Chem B; 2009 Jan; 113(3):767-78. PubMed ID: 19115819 [TBL] [Abstract][Full Text] [Related]
19. The importance of being exhaustive. Optimization of bridging structural water molecules and water networks in models of biological systems. Kellogg GE; Chen DL Chem Biodivers; 2004 Jan; 1(1):98-105. PubMed ID: 17191777 [TBL] [Abstract][Full Text] [Related]
20. A neutron crystallographic analysis of a rubredoxin mutant at 1.6 A resolution. Chatake T; Kurihara K; Tanaka I; Tsyba I; Bau R; Jenney FE; Adams MW; Niimura N Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1364-73. PubMed ID: 15272158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]