BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 7618670)

  • 1. Improved PCO2 measurement in six standard blood gas analysers using a phosphate-buffered solution for gastric tonometry.
    Knichwitz G; Mertes N; Kuhmann M
    Anaesthesia; 1995 Jun; 50(6):532-4. PubMed ID: 7618670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gastric tonometry: precision and reliability are improved by a phosphate buffered solution.
    Knichwitz G; Kuhmann M; Brodner G; Mertes N; Goeters C; Brüssel T
    Crit Care Med; 1996 Mar; 24(3):512-6. PubMed ID: 8625643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH.
    Takala J; Parviainen I; Siloaho M; Ruokonen E; Hämäläinen E
    Crit Care Med; 1994 Nov; 22(11):1877-9. PubMed ID: 7956295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advantage of buffered solutions or automated capnometry in air-filled balloons for use in gastric tonometry.
    Temmesfeld-Wollbrück B; Szalay A; Olschewski H; Grimminger F; Seeger W
    Intensive Care Med; 1997 Apr; 23(4):423-7. PubMed ID: 9142582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tonometry of partial carbon dioxide tension in gastric mucosa: use of saline, buffer solutions, gastric juice or air.
    Groeneveld AJ
    Crit Care; 2000; 4(4):201-3. PubMed ID: 11094501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous assessment of gastric intramucosal PCO2 and pH in hemorrhagic shock using capnometric recirculating gas tonometry.
    Guzman JA; Kruse JA
    Crit Care Med; 1997 Mar; 25(3):533-7. PubMed ID: 9118673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring carbon dioxide tension in saline and alternative solutions: quantification of bias and precision in two blood gas analyzers.
    Riddington D; Venkatesh B; Clutton-Brock T; Bion J
    Crit Care Med; 1994 Jan; 22(1):96-100. PubMed ID: 8124983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type of solution and PCO2 measurement errors during tonometry.
    Kolkman JJ; Zwarekant LJ; Boshuizen K; Groeneveld AB; Steverink PJ; Meuwissen SG
    Intensive Care Med; 1997 Jun; 23(6):658-63. PubMed ID: 9255646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of agreement between tonometric and gastric juice partial carbon dioxide tension.
    Dubin A; Badie J; Fernandez S; Estenssoro E; Canales H; Bordoli G; Pálizas F
    Crit Care; 2000; 4(4):249-254. PubMed ID: 11056754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of gastric air tonometry with standard saline tonometry.
    Tzelepis G; Kadas V; Michalopoulos A; Geroulanos S
    Intensive Care Med; 1996 Nov; 22(11):1239-43. PubMed ID: 9120119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gastric tonometry and prediction of outcome in the critically ill. Arterial to intramucosal pH gradient and carbon dioxide gradient.
    Gomersall CD; Joynt GM; Ho KM; Young RJ; Buckley TA; Oh TE
    Anaesthesia; 1997 Jul; 52(7):619-23. PubMed ID: 9244017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saline tonometry: comparison of Pico2 and pHi values between centers is questionable.
    Thorburn K; Baines PB
    Crit Care Med; 2001 Mar; 29(3):697-8. PubMed ID: 11373449
    [No Abstract]   [Full Text] [Related]  

  • 13. Reliability of tonometric intramucosal PCO2 measurement with a phosphate-buffer solution.
    Eichelbrönner O; Feist H; Georgieff M; Radermacher P
    Intensive Care Med; 1995 Apr; 21(4):387-8. PubMed ID: 7650267
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluation of the 5-French saline paediatric gastric tonometer.
    Thorburn K; Hatherill M; Roberts PC; Durward A; Tibby SM; Murdoch IA
    Intensive Care Med; 2000 Jul; 26(7):973-80. PubMed ID: 10990115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon dioxide and oxygen partial pressure measurements in the cerebrospinal fluid in a conventional blood gas analyzer: analysis of bias and precision.
    Venkatesh B; Boots RJ
    J Neurol Sci; 1997 Mar; 147(1):5-8. PubMed ID: 9094053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of carbon dioxide- and oxygen-tonometered phosphate-bicarbonate-chloride-glycerol-water mixtures for calibration and control of pH, pCO2, and pO2 electrode systems.
    Veefkind AH; Van den Camp RA; Maas AH
    Clin Chem; 1975 May; 21(6):685-93. PubMed ID: 235377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of a point-of-care blood gas analyzer in gastric tonometry measurements of intramucosal pH (pHi) and P(CO2) gap.
    Dohgomori H; Arikawa K; Kanmura Y
    J Anesth; 2004; 18(1):14-7. PubMed ID: 14991470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of time-dependent PCO2 tonometry in the normal human stomach.
    Kolkman JJ; Steverink PJ; Groeneveld AB; Meuwissen SG
    Br J Anaesth; 1998 Nov; 81(5):669-75. PubMed ID: 10193274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of air tonometry with gastric tonometry using saline and other equilibrating fluids: an in vivo and in vitro study.
    Barry B; Mallick A; Hartley G; Bodenham A; Vucevic M
    Intensive Care Med; 1998 Aug; 24(8):777-84. PubMed ID: 9757920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instrumental variability of respiratory blood gases among different blood gas analysers in different laboratories.
    Kampelmacher MJ; van Kesteren RG; Winckers EK
    Eur Respir J; 1997 Jun; 10(6):1341-4. PubMed ID: 9192940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.