These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7619495)

  • 1. Localization and quantification of cholecystokinin receptors in rat brain with storage phosphor autoradiography.
    Tang C; Biemond I; Lamers CB
    Biotechniques; 1995 May; 18(5):886-9. PubMed ID: 7619495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative in vitro phosphor imaging using [3H] and [18F] radioligands: the effects of chronic desipramine treatment on serotonin 5-HT2 receptors.
    Strome EM; Jivan S; Doudet DJ
    J Neurosci Methods; 2005 Jan; 141(1):143-54. PubMed ID: 15585298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of cholecystokinin receptors in the vertebrate brain: species differences studied by receptor autoradiography.
    Dietl MM; Palacios JM
    J Chem Neuroanat; 1989; 2(3):149-61. PubMed ID: 2789732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization and characterization of CCK receptors in exocrine pancreas of rat with storage phosphor autoradiography.
    Tang C; Biemond I; Lamers CB
    Pancreas; 1996 Oct; 13(3):311-5. PubMed ID: 8884854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Storage phosphor imaging technique improves the accuracy of RNA quantitation using 32P-labeled cDNA probes.
    Zouboulis CC; Tavakkol A
    Biotechniques; 1994 Feb; 16(2):290-2, 294. PubMed ID: 7514007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoradiography using storage phosphor technology.
    Johnston RF; Pickett SC; Barker DL
    Electrophoresis; 1990 May; 11(5):355-60. PubMed ID: 2194789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species differences in the localization of 'peripheral' type cholecystokinin receptors in rodent brain.
    Hill DR; Shaw TM; Woodruff GN
    Neurosci Lett; 1987 Aug; 79(3):286-9. PubMed ID: 3658220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of cholecystokinin binding sites in the adult and developing Brazilian opossum brain.
    Kuehl-Kovarik MC; Ross LR; Elmquist JK; Jacobson CD
    J Comp Neurol; 1993 Oct; 336(1):40-52. PubMed ID: 8254112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoaffinity labeling of rat pancreatic cholecystokinin type A receptor antagonist binding sites demonstrates the presence of a truncated cholecystokinin type A receptor.
    Poirot SS; Escrieut C; Dufresne M; Martinez J; Bouisson M; Vaysse N; Fourmy D
    Mol Pharmacol; 1994 Apr; 45(4):599-607. PubMed ID: 8183238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using 125I-Bolton-Hunter-CCK8.
    Niehoff DL
    Peptides; 1989; 10(2):265-74. PubMed ID: 2755869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of cholecystokinin receptors in the bovine brain: a quantitative autoradiographic study.
    Morency MA; Quirion R; Mishra RK
    Neuroscience; 1994 Sep; 62(1):307-16. PubMed ID: 7816208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of [3H]cholecystokinin octapeptide binding sites in the hippocampal region of the rat brain as shown by in vitro receptor autoradiography.
    Köhler C; Hallman H; Radesäter AC
    Neuroscience; 1987 Jun; 21(3):857-67. PubMed ID: 3627438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholecystokinin receptors in human pancreas and gallbladder muscle: a comparative study.
    Tang C; Biemond I; Lamers CB
    Gastroenterology; 1996 Dec; 111(6):1621-6. PubMed ID: 8942742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of storage phosphor imaging for quantitative analysis of 2-D gels using the Quest II system.
    Patterson SD; Latter GI
    Biotechniques; 1993 Dec; 15(6):1076-83. PubMed ID: 8292341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors.
    Reubi JC; Schaer JC; Waser B
    Cancer Res; 1997 Apr; 57(7):1377-86. PubMed ID: 9102227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiviral activity of ganciclovir, 9-(1,3-dihydroxy-2-propoxymethyl) guanine against woodchuck hepatitis virus: quantitative measurement of woodchuck hepatitis virus DNA using storage phosphor technology.
    Zahm FE; Bonino F; Giuseppetti R; Rapicetta M
    Ital J Gastroenterol Hepatol; 1998 Oct; 30(5):510-6. PubMed ID: 9836108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel quantitative receptor autoradiography and in situ hybridization histochemistry technique using storage phosphor screen imaging.
    Ito T; Suzuki T; Lim DK; Wellman SE; Ho IK
    J Neurosci Methods; 1995 Jul; 59(2):265-71. PubMed ID: 8531495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholecystokinin receptor characterization and cholecystokinin-A receptor messenger RNA expression in transgenic mouse pancreatic carcinomas and dysplastic pancreas.
    Povoski SP; Zhou W; Longnecker DS; Bell RH
    Oncol Res; 1994; 6(9):411-7. PubMed ID: 7703527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autoradiographic study on [3H]-[D-Ala2]-deltorphin-I binding sites in the rat brain.
    Renda T; Negri L; Tooyama I; Casu C; Melchiorri P
    Neuroreport; 1993 Sep; 4(10):1143-6. PubMed ID: 8219007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of glucose tracer uptake and glucose transporter distribution in the regionally ischaemic isolated rat heart: application of a new autoradiographic technique.
    Southworth R; Dearling JL; Medina RA; Flynn AA; Pedley RB; Garlick PB
    Eur J Nucl Med Mol Imaging; 2002 Oct; 29(10):1334-41. PubMed ID: 12271416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.